All involutive solutions of the Yang-Baxter equation

Gandalf Lechner

joint work with Ulrich Pennig and Simon Wood

V: finite-dimensional vector space, $R: V \otimes V \rightarrow V \otimes V$ linear.

The YBE is the algebraic equation

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)$

in $End(V \otimes V \otimes V)$.

V: finite-dimensional vector space, $R: V \otimes V \rightarrow V \otimes V$ linear.

The YBE is the algebraic equation

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)$

in $End(V \otimes V \otimes V)$.

Graphical representation:

Everybody likes the YBE

The YBE appears in a remarkable number of fields:

- Statistical mechanics
- Quantum mechanics
- Integrable QFT
- Braid groups
- Knot theory
- Quantum groups
- Subfactors
- Quantum information theory
- Electric networks
- ...

Everybody likes the YBE

The YBE appears in a remarkable number of fields:

- Statistical mechanics
- Quantum mechanics
- Integrable QFT
- Braid groups
- Knot theory
- Quantum groups
- Subfactors
- Quantum information theory
- Electric networks
- ...

Independent of the field of application, one is often interested in the **solutions** to the YBE.

- completely solved in dim V = 2 with computer algebra [Hietarinta 1992]
- but this did not work already for dim V = 3 [Hietarinta 1993]

- completely solved in dim V = 2 with computer algebra [Hietarinta 1992]
- but this did not work already for dim V = 3 [Hietarinta 1993]
- Quantum groups [Drinfeld 86, Jimbo 86, ...] give many solutions of the YBE, but not a complete solution theory.

- completely solved in dim V = 2 with computer algebra [Hietarinta 1992]
- but this did not work already for dim V = 3 [Hietarinta 1993]
- Quantum groups [Drinfeld 86, Jimbo 86, ...] give many solutions of the YBE, but not a complete solution theory.
- Here: Consider solutions of YBE up to equivalence relation suggested by group theory and integrable AQFT [Alazzawi, GL 2017].

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ that solves the YBE and satisfies $R^2 = 1$.

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ that solves the YBE and satisfies $R^2 = 1$.

Such involutive *R*'s appear in

- elastic two-body S-matrices in integrable QFT
- symmetries of categories of vector spaces [Lyubashenko 1987]
- representations of Thompson's group \mathcal{V} [Jones 2016]
- constructions of certain non-commutative spaces [Dubois-Violette, Landi 2017]

• ...

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ that solves the YBE and satisfies $R^2 = 1$.

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ that solves the YBE and satisfies $R^2 = 1$.

• $\mathcal{R}_0 \coloneqq$ set of all R-matrices (with any V)

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ that solves the YBE and satisfies $R^2 = 1$.

- $\mathcal{R}_0 := \text{set of all R-matrices (with any V)}$
- S_n := symmetric group of n letters. Generators σ_i, i = 1, ..., n 1 satisfy

$$\sigma_{i+1}\sigma_i\sigma_{i+1} = \sigma_i\sigma_{i+1}\sigma_i$$

$$\sigma_i\sigma_j = \sigma_j\sigma_i, \quad |i-j| > 1$$

$$\sigma_i^2 = \mathbf{e}.$$

• Any $R \in \mathcal{R}_0$ gives unitary rep. $\rho_R^{(n)}$ of S_n on $V^{\otimes n}$ via

$$\rho_R^{(n)}(\sigma_i) \coloneqq \mathsf{id}_V^{\otimes (i-1)} \otimes R \otimes \mathsf{id}_V^{\otimes (n-i-1)}$$

Equivalent R-matrices

Definition

 $R, S \in \mathcal{R}_0$ are called equivalent, written

 $R \sim S$,

if

$$\rho_R^{(n)} \cong \rho_S^{(n)} \quad \text{for all } n \in \mathbb{N}.$$

(unitary equivalence of S_n-representations)

Equivalent R-matrices

Definition

 $R, S \in \mathcal{R}_0$ are called equivalent, written

 $R \sim S$,

if

$$\rho_R^{(n)} \cong \rho_S^{(n)} \quad \text{for all } n \in \mathbb{N}.$$

(unitary equivalence of S_n-representations)

• Example: $R \in \mathcal{R}_0(V)$, $U : V \to V$ unitary. Then $R \sim (U \otimes U)R(U^{-1} \otimes U^{-1})$

But this does not exhaust the equivalence class of [R].

Equivalent R-matrices

Definition

 $R, S \in \mathcal{R}_0$ are called equivalent, written

 $R \sim S$,

if

$$\rho_R^{(n)} \cong \rho_S^{(n)} \quad \text{for all } n \in \mathbb{N}.$$

(unitary equivalence of S_n-representations)

• Example: $R \in \mathcal{R}_0(V)$, $U : V \to V$ unitary. Then $R \sim (U \otimes U)R(U^{-1} \otimes U^{-1})$

But this does not exhaust the equivalence class of [R].

• Aim: Determine all R-matrices up to equivalence ~.

R-matrices and Young diagrams

• Recall Young diagrams = integer partitions

$$= 3 + 2 + 1,$$
 $= 1 + 1 + 1 + 1,$ $= 5 + 2 + 2 \dots$

• Y: Set of all Young diagrams.

R-matrices and Young diagrams

• Recall Young diagrams = integer partitions

$$= 3 + 2 + 1,$$
 $= 1 + 1 + 1 + 1,$ $= 5 + 2 + 2 \dots$

• Y: Set of all Young diagrams.

Theorem I: Structure of \mathcal{R}_0/\sim

Equivalence classes of R-matrices are in 1: 1 correspondence with pairs of Young diagrams:

$$\mathcal{R}_0/\sim \cong (\mathbb{Y} \times \mathbb{Y}) \setminus \{(\emptyset, \emptyset)\}$$

- ▶ Dimension = total number of boxes in the two diagrams.
- ► To each pair (Y, Y') of diagrams, an explicit normal form R-matrix $R_{Y,Y'} \in \mathcal{R}_0$ can be constructed.

• Recall the partial trace ptr : $End(V \otimes V) \rightarrow End(V)$ defined by

 $ptr(A \otimes B) \coloneqq Tr(A) \cdot B$.

• Recall the partial trace ptr : $End(V \otimes V) \rightarrow End(V)$ defined by

 $\operatorname{ptr}(A \otimes B) \coloneqq \operatorname{Tr}(A) \cdot B$.

Theorem II: Characterization of ~

 $R, S \in \mathcal{R}_0.$

- ► $R \sim S \iff ptr R \cong ptr S$ (unitary equivalence of partial traces).
- ▶ The eigenvalues of ptr *R* are non-zero integers determining the Young diagrams of *R*.

• Recall the partial trace ptr : $End(V \otimes V) \rightarrow End(V)$ defined by

 $ptr(A \otimes B) := Tr(A) \cdot B$.

Theorem II: Characterization of ~

 $R, S \in \mathcal{R}_0.$

- ► $R \sim S \iff ptr R \cong ptr S$ (unitary equivalence of partial traces).
- ▶ The eigenvalues of ptr *R* are non-zero integers determining the Young diagrams of *R*.

Example:
$$R = \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)$$

• Recall the partial trace ptr : $End(V \otimes V) \rightarrow End(V)$ defined by

 $ptr(A \otimes B) := Tr(A) \cdot B$.

Theorem II: Characterization of ~

 $R, S \in \mathcal{R}_0$.

- ► $R \sim S \iff ptr R \cong ptr S$ (unitary equivalence of partial traces).
- ▶ The eigenvalues of ptr *R* are non-zero integers determining the Young diagrams of *R*.

Yang-Baxter characters of S_∞

• $S_{\infty} :=$ inductive lim. of $S_n \subset S_{n+1} \subset ... =$ infinite symmetric grp

Yang-Baxter characters of S_∞

- $S_{\infty} :=$ inductive lim. of $S_n \subset S_{n+1} \subset ... =$ infinite symmetric grp
- S_∞ is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]

Yang-Baxter characters of S_∞

- $S_{\infty} :=$ inductive lim. of $S_n \subset S_{n+1} \subset ... =$ infinite symmetric grp
- S_∞ is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]
- The $\rho_{\rm R}^{(n)}$ define a hom. into infinite tensor product

$$\rho_R: S_{\infty} \to \bigotimes_{n \ge 1} \operatorname{End} V$$

Yang-Baxter characters of S_{∞}

- $S_{\infty} :=$ inductive lim. of $S_n \subset S_{n+1} \subset ...$ = infinite symmetric grp
- S_∞ is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]
- The $\rho_{\rm R}^{(n)}$ define a hom. into infinite tensor product

$$\rho_R: S_{\infty} \to \bigotimes_{n \ge 1} \operatorname{End} V$$

• Normalized trace on tensor products (*d* = dim *V*):

$$\tau = \frac{\mathrm{Tr}_V}{d} \otimes \frac{\mathrm{Tr}_V}{d} \otimes \frac{\mathrm{Tr}_V}{d} \otimes \dots$$

• Given $R \in \mathcal{R}_0$,

$$\chi_{\mathsf{R}} \coloneqq \tau \circ \rho_{\mathsf{R}} : \mathsf{S}_{\infty} \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} ("Yang-Baxter character").

Special property of Yang-Baxter characters: χ_R "factorizes": For $\sigma, \sigma' \in S_\infty$ with disjoint supports,

 $\chi_R(\sigma\sigma') = \chi_R(\sigma) \cdot \chi_R(\sigma').$

Special property of Yang-Baxter characters: χ_R "factorizes": For $\sigma, \sigma' \in S_{\infty}$ with disjoint supports,

$$\chi_R(\sigma\sigma') = \chi_R(\sigma) \cdot \chi_R(\sigma') \,.$$

Theorem [Thoma 1964]

- A character χ of S_{∞} is extremal if and only if it factorizes.
- ▶ $\mathbb{T} :=$ all real sequences $\{\alpha_i\}_i$, $\{\beta_i\}_i$ such that

•
$$\alpha_i \ge \alpha_{i+1} \ge 0$$
, $\beta_i \ge \beta_{i+1} \ge 0$

• $\sum_i (\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1 : 1 correspondence with ${\mathbb T}$ via

$$\chi(n\text{-cycle}) = \sum_{i} \alpha_i^n + (-1)^{n+1} \sum_{i} \beta_i^n, \qquad n \ge 2.$$

Special property of Yang-Baxter characters: χ_R "factorizes": For $\sigma, \sigma' \in S_{\infty}$ with disjoint supports,

$$\chi_R(\sigma\sigma') = \chi_R(\sigma) \cdot \chi_R(\sigma') \,.$$

Theorem [Thoma 1964]

- A character χ of S_{∞} is extremal if and only if it factorizes.
- ▶ T :=all real sequences $\{\alpha_i\}_i$, $\{\beta_i\}_i$ such that

•
$$\alpha_i \ge \alpha_{i+1} \ge 0$$
, $\beta_i \ge \beta_{i+1} \ge 0$

• $\sum_i (\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1 : 1 correspondence with ${\mathbb T}$ via

$$\chi(n\text{-cycle}) = \sum_{i} \alpha_i^n + (-1)^{n+1} \sum_{i} \beta_i^n, \qquad n \ge 2.$$

• Each *R* defines a point $(\alpha, \beta) \in \mathbb{T}$. The α_i, β_i are the good parameters to characterize *R*.

Which α, β are realized by Yang-Baxter characters?

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character χ_R , $R \in \mathcal{R}_0$, if and only if

- (1) only finitely many α_i, β_i are non-zero,
- (2) $\sum_{i} (\alpha_{i} + \beta_{i}) = 1$, and
- (3) all α_i, β_i are rational.

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character χ_R , $R \in \mathcal{R}_0$, if and only if

- (1) only finitely many α_i, β_i are non-zero,
- (2) $\sum_{i} (\alpha_{i} + \beta_{i}) = 1$, and
- (3) all α_i, β_i are rational.
 - the proof of (1) and (2) relies on a result of [Wassermann 1981]
 - the proof of (3) is more difficult (subfactors)

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character χ_R , $R \in \mathcal{R}_0$, if and only if

- (1) only finitely many α_i, β_i are non-zero,
- (2) $\sum_{i} (\alpha_{i} + \beta_{i}) = 1$, and
- (3) all α_i, β_i are rational.
 - the proof of (1) and (2) relies on a result of [Wassermann 1981]
 - the proof of (3) is more difficult (subfactors)

Example: $B, F \in \mathbb{N}_0$

$$\alpha_1 = \dots = \alpha_B = \beta_1 = \dots = \beta_F = \frac{1}{B+F}$$

This YB-character appears in superselection theory [Doplicher, Haag, Roberts 1971]

 $R \in \mathcal{R}_0$

- Normalized trace τ = state on the *-algebra generated by all R_i , $i \in \mathbb{N}$.
- In GNS representation:

$$\mathcal{M}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \in \mathbb{N}\}''$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).

 $R \in \mathcal{R}_0$

- Normalized trace τ = state on the *-algebra generated by all R_i , $i \in \mathbb{N}$.
- In GNS representation:

$$\mathcal{M}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \in \mathbb{N}\}''$$

- As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).
- Subgroup

$$\mathsf{S}^{>}_{\infty} \coloneqq \{ \sigma \in \mathsf{S}_{\infty} \, : \, \sigma(\mathsf{1}) = \mathsf{1} \} \subset \mathsf{S}_{\infty}$$

 $R \in \mathcal{R}_0$

- Normalized trace τ = state on the *-algebra generated by all R_i , $i \in \mathbb{N}$.
- In GNS representation:

$$\mathcal{M}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \in \mathbb{N}\}''$$

- As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).
- Subgroup

$$S_{\infty}^{>} \coloneqq \{ \sigma \in S_{\infty} \, : \, \sigma(1) = 1 \} \subset S_{\infty}$$

generates subfactor

$$\mathcal{N}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}^{>}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \geq 2\}'' \subset \mathcal{M}_{\mathsf{R}}.$$

 $R \in \mathcal{R}_0$

- Normalized trace τ = state on the *-algebra generated by all R_i , $i \in \mathbb{N}$.
- In GNS representation:

$$\mathcal{M}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \in \mathbb{N}\}''$$

- As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).
- Subgroup

$$S_{\infty}^{>} \coloneqq \{ \sigma \in S_{\infty} \, : \, \sigma(1) = 1 \} \subset S_{\infty}$$

generates subfactor

$$\mathcal{N}_{\mathsf{R}} \coloneqq \pi_{\tau}(\rho_{\mathsf{R}}(\mathsf{S}^{>}_{\infty}))'' = \{\pi_{\tau}(\mathsf{R}_{i}) : i \geq 2\}'' \subset \mathcal{M}_{\mathsf{R}}.$$

• $\mathcal{N}'_R \cap \mathcal{M}_R = \mathbb{C}$ if and only if $R \in \{\pm 1, \pm F\}$ [Gohm-Köstler 2010, Yamashita 2012]

Essential results:

Essential results:

(1) $E(\pi_{\tau}(R_1)) = ptr(R) \otimes 1 \otimes 1 \otimes \ldots$

Essential results:

(1) $E(\pi_{\tau}(R_1)) = ptr(R) \otimes 1 \otimes 1 \otimes \ldots$

(2) Using results from [Gohm-Köstler 2010],

 $\chi_R(n\text{-cycle}) = \tau(\operatorname{ptr}(R)^{n-1}), \quad n \ge 2.$

Essential results:

(1) $E(\pi_{\tau}(R_1)) = ptr(R) \otimes 1 \otimes 1 \otimes \ldots$

(2) Using results from [Gohm-Köstler 2010],

 $\chi_R(n\text{-cycle}) = \tau(\operatorname{ptr}(R)^{n-1}), \quad n \ge 2.$

• With these results, one can prove Thm. II and Thm. III

Normal form R-matrices

• So far: Given R, can compute α_i , β_i as eigenvalues of ptr(R)/d.

Normal form R-matrices

- So far: Given R, can compute α_i, β_i as eigenvalues of ptr(R)/d.
- Now: Given finitely many rational $0 \le \alpha_i, \beta_i \le 1$ such that $\sum_i (\alpha_i + \beta_i) = 1$, construct *R* with these parameters.

Normal form R-matrices

- So far: Given R, can compute α_i, β_i as eigenvalues of ptr(R)/d.
- Now: Given finitely many rational $0 \le \alpha_i, \beta_i \le 1$ such that $\sum_i (\alpha_i + \beta_i) = 1$, construct *R* with these parameters.
- Plan: Build R-matrix from simple blocks by "direct sum"

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

 $X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes (V \oplus W))$

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

$$X \boxplus Y \in \mathsf{End}((V \oplus W) \otimes (V \oplus W))$$

as

 $X \oplus Y = X \oplus Y \oplus F \quad \text{on}$ $(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$ [Lyubashenko 87, Gurevich 91, Hietarinta 93]

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

$$X \boxplus Y \in \mathsf{End}((V \oplus W) \otimes (V \oplus W))$$

as

 $X \oplus Y = X \oplus Y \oplus F \quad \text{on}$ $(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

- $\ensuremath{\boxplus}$ is commutative and associative.
- \boxplus preserves the YBE: $R, S \in \mathcal{R}_0 \Rightarrow R \boxplus S \in \mathcal{R}_0$.
- $ptr(R \boxplus S) = ptr R \oplus ptr S$.

• Let $d := d_1^+ + \ldots + d_n^+ + d_1^- + \ldots + d_m^-$. Then χ_N has Thoma parameters

$$\alpha_i = \frac{d_i^+}{d}, \qquad \beta_j = \frac{d_j^-}{d}.$$

• Let $d := d_1^+ + \ldots + d_n^+ + d_1^- + \ldots + d_m^-$. Then χ_N has Thoma parameters

$$\alpha_i = \frac{d_i^+}{d}, \qquad \beta_j = \frac{d_j^-}{d}.$$

• This leads to the proof of Thm. I.

• Let $d := d_1^+ + \ldots + d_n^+ + d_1^- + \ldots + d_m^-$. Then χ_N has Thoma parameters

$$\alpha_i = \frac{d_i^+}{d}, \qquad \beta_j = \frac{d_j^-}{d}.$$

• This leads to the proof of Thm. I.

Example: $\mathcal{R}_0(\mathbb{C}^2)/\sim$ has 5 elements:

Repitition

Involutive R-matrices are governed by the following rules:

(~) There is a natural equivalence in terms of $\mathsf{S}_\infty\text{-representations}.$

(I)
$$\mathcal{R}_0/\sim \cong (\mathbb{Y} \times \mathbb{Y}) \setminus \{(\emptyset, \emptyset)\}.$$

- (II) $R \sim S \iff \operatorname{ptr} R \cong \operatorname{ptr} S$.
- (III) Thoma parameters (α, β) of Yang-Baxter characters are characterized by:
 - (1) only finitely many α_i, β_i are non-zero,
 - (2) $\sum_{i} (\alpha_{i} + \beta_{i}) = 1$, and
 - (3) all α_i, β_i are rational.
- (N) In each equivalence class, one can construct an explicit representative by using ⊞.

The following generalizations are on our agenda:

- Introduce a **spectral parameter** → QFT!
- **Drop the assumption** $R^2 = 1 \longrightarrow$ braid groups!