All involutive solutions of the Yang-Baxter equation

Gandalf Lechner

joint work with Ulrich Pennig and Simon Wood

The Yang-Baxter equation (YBE)

V : finite-dimensional vector space, $R: V \otimes V \rightarrow V \otimes V$ linear.

The YBE is the algebraic equation

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)=\left(\mathrm{id}_{V} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes R\right)
$$

in $E n d(V \otimes V \otimes V)$.

The Yang-Baxter equation (YBE)

V : finite-dimensional vector space, $R: V \otimes V \rightarrow V \otimes V$ linear.

The YBE is the algebraic equation

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)=\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)\left(\mathrm{id}_{v} \otimes R\right)
$$

in $E n d(V \otimes V \otimes V)$.
Graphical representation:

Everybody likes the YBE

The YBE appears in a remarkable number of fields:

- Statistical mechanics
- Quantum mechanics
- Integrable QFT
- Braid groups
- Knot theory
- Quantum groups
- Subfactors
- Quantum information theory
- Electric networks
- ...

Everybody likes the YBE

The YBE appears in a remarkable number of fields:

- Statistical mechanics
- Quantum mechanics
- Integrable QFT
- Braid groups
- Knot theory
- Quantum groups
- Subfactors
- Quantum information theory
- Electric networks
- ...

Independent of the field of application, one is often interested in the solutions to the YBE.

Solving the YBE

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)
$$

After fixing a basis of V, the YBE amounts to $(\operatorname{dim} V)^{6}$ cubic equations for $(\operatorname{dim} V)^{4}$ unknowns.

Solving the YBE

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)=\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)\left(\mathrm{id}_{v} \otimes R\right)
$$

After fixing a basis of V, the YBE amounts to $(\operatorname{dim} V)^{6}$ cubic equations for $(\operatorname{dim} V)^{4}$ unknowns.

- completely solved in $\operatorname{dim} V=2$ with computer algebra [Hietarinta 1992]
- but this did not work already for $\operatorname{dim} V=3$ [Hietarinta 1993]

Solving the YBE

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)=\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)\left(\mathrm{id}_{v} \otimes R\right)
$$

After fixing a basis of V, the YBE amounts to $(\operatorname{dim} V)^{6}$ cubic equations for $(\operatorname{dim} V)^{4}$ unknowns.

- completely solved in $\operatorname{dim} V=2$ with computer algebra [Hietarinta 1992]
- but this did not work already for $\operatorname{dim} V=3$ [Hietarinta 1993]
- Quantum groups [Drinfeld 86, Jimbo 86, ...] give many solutions of the YBE, but not a complete solution theory.

Solving the YBE

$$
\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)=\left(\mathrm{id}_{v} \otimes R\right)\left(R \otimes \mathrm{id}_{v}\right)\left(\mathrm{id}_{v} \otimes R\right)
$$

After fixing a basis of V, the YBE amounts to $(\operatorname{dim} V)^{6}$ cubic equations for $(\operatorname{dim} V)^{4}$ unknowns.

- completely solved in $\operatorname{dim} V=2$ with computer algebra [Hietarinta 1992]
- but this did not work already for $\operatorname{dim} V=3$ [Hietarinta 1993]
- Quantum groups [Drinfeld 86, Jimbo 86, ...] give many solutions of the YBE, but not a complete solution theory.
- Here: Consider solutions of YBE up to equivalence relation suggested by group theory and integrable AQFT [Alazzawi, GL 2017].

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary $R \in \operatorname{End}(V \otimes V)$ that solves the YBE and satisfies $R^{2}=1$.

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary $R \in \operatorname{End}(V \otimes V)$ that solves the YBE and satisfies $R^{2}=1$.

Such involutive R's appear in

- elastic two-body S-matrices in integrable QFT
- symmetries of categories of vector spaces [Lyubashenko 1987]
- representations of Thompson's group \mathcal{V} [Jones 2016]
- constructions of certain non-commutative spaces [Dubois-Violette, Landi 2017]
- ...

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary $R \in \operatorname{End}(V \otimes V)$ that solves the YBE and satisfies $R^{2}=1$.

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary $R \in \operatorname{End}(V \otimes V)$ that solves the YBE and satisfies $R^{2}=1$.

- $\mathcal{R}_{0}:=$ set of all R-matrices (with any V)

The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary $R \in \operatorname{End}(V \otimes V)$ that solves the YBE and satisfies $R^{2}=1$.

- $\mathcal{R}_{0}:=$ set of all R -matrices (with any V)
- $S_{n}:=$ symmetric group of n letters. Generators $\sigma_{i}, i=1, . ., n-1$ satisfy

$$
\begin{aligned}
\sigma_{i+1} \sigma_{i} \sigma_{i+1} & =\sigma_{i} \sigma_{i+1} \sigma_{i} \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i}, \quad|i-j|>1 \\
\sigma_{i}^{2} & =e
\end{aligned}
$$

- Any $R \in \mathcal{R}_{0}$ gives unitary rep. $\rho_{R}^{(n)}$ of S_{n} on $V^{\otimes n}$ via

$$
\rho_{R}^{(n)}\left(\sigma_{i}\right):=\mathrm{id}_{V}^{\otimes(i-1)} \otimes R \otimes \mathrm{id}_{V}^{\otimes(n-i-1)}
$$

$$
\left.\left.\left|\left.\right|_{1}\right|_{2 \ldots i} \cdots\right|_{i+1} \ldots\right|_{n} \ldots{ }_{n} \ldots R_{i} V^{\otimes n} \rightarrow V^{8 n}
$$

$$
R_{i} R_{j}=R_{j} R_{i} \quad|i-j|>1
$$

$$
\left.\left|\left.\right|_{1}\right|_{\left.2 \ldots\right|_{i+1} \ldots} \cdots\right|_{n} ^{\mid} \cdots R_{i}: V^{\otimes n} \rightarrow V^{\infty n}
$$

Equivalent R-matrices

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent, written

$$
R \sim S,
$$

if

$$
\rho_{R}^{(n)} \cong \rho_{S}^{(n)} \quad \text { for all } n \in \mathbb{N} .
$$

(unitary equivalence of S_{n}-representations)

Equivalent R-matrices

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent, written

$$
R \sim S,
$$

if

$$
\rho_{R}^{(n)} \cong \rho_{S}^{(n)} \quad \text { for all } n \in \mathbb{N} .
$$

(unitary equivalence of S_{n}-representations)

- Example: $R \in \mathcal{R}_{0}(V), U: V \rightarrow V$ unitary. Then

$$
R \sim(U \otimes U) R\left(U^{-1} \otimes U^{-1}\right)
$$

But this does not exhaust the equivalence class of $[R]$.

Equivalent R-matrices

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent, written

$$
R \sim S,
$$

if

$$
\rho_{R}^{(n)} \cong \rho_{S}^{(n)} \quad \text { for all } n \in \mathbb{N} .
$$

(unitary equivalence of S_{n}-representations)

- Example: $R \in \mathcal{R}_{0}(V), U: V \rightarrow V$ unitary. Then

$$
R \sim(U \otimes U) R\left(U^{-1} \otimes U^{-1}\right)
$$

But this does not exhaust the equivalence class of $[R]$.

- Aim: Determine all R-matrices up to equivalence \sim.

R-matrices and Young diagrams

- Recall Young diagrams = integer partitions

- \mathbb{Y} : Set of all Young diagrams.

R-matrices and Young diagrams

- Recall Young diagrams = integer partitions

$$
\square=3+2+1, \quad \exists=1+1+1+1, \quad \square \quad=5+2+2
$$

- \mathbb{Y} : Set of all Young diagrams.

Theorem I: Structure of \mathcal{R}_{0} / \sim

- Equivalence classes of R-matrices are in 1: 1 correspondence with pairs of Young diagrams:

$$
\mathcal{R}_{0} / \sim \cong(\mathbb{Y} \times \mathbb{Y}) \backslash\{(\varnothing, \varnothing)\}
$$

- Dimension = total number of boxes in the two diagrams.
- To each pair $\left(Y, Y^{\prime}\right)$ of diagrams, an explicit normal form R-matrix $R_{Y, Y^{\prime}} \in \mathcal{R}_{0}$ can be constructed.

Partial traces of R-matrices

- Recall the partial trace ptr : $\operatorname{End}(V \otimes V) \rightarrow E n d(V)$ defined by

$$
\operatorname{ptr}(A \otimes B):=\operatorname{Tr}(A) \cdot B
$$

Partial traces of R-matrices

- Recall the partial trace ptr : $\operatorname{End}(V \otimes V) \rightarrow E n d(V)$ defined by

$$
\operatorname{ptr}(A \otimes B):=\operatorname{Tr}(A) \cdot B
$$

Theorem II: Characterization of ~

$R, S \in \mathcal{R}_{0}$.

- $R \sim S \Longleftrightarrow \operatorname{ptr} R \cong \operatorname{ptr} S$ (unitary equivalence of partial traces).
- The eigenvalues of $p t r R$ are non-zero integers determining the Young diagrams of R.

Partial traces of R-matrices

- Recall the partial trace ptr : $\operatorname{End}(V \otimes V) \rightarrow E n d(V)$ defined by

$$
\operatorname{ptr}(A \otimes B):=\operatorname{Tr}(A) \cdot B
$$

Theorem II: Characterization of ~

$R, S \in \mathcal{R}_{0}$.

- $R \sim S \Longleftrightarrow \operatorname{ptr} R \cong \operatorname{ptr} S$ (unitary equivalence of partial traces).
- The eigenvalues of ptr R are non-zero integers determining the Young diagrams of R.

$$
\text { Example: } R=(\square, \square \square)
$$

Partial traces of R-matrices

- Recall the partial trace ptr : $\operatorname{End}(V \otimes V) \rightarrow E n d(V)$ defined by

$$
\operatorname{ptr}(A \otimes B):=\operatorname{Tr}(A) \cdot B
$$

Theorem II: Characterization of ~

$R, S \in \mathcal{R}_{0}$.

- $R \sim S \Longleftrightarrow \operatorname{ptr} R \cong \operatorname{ptr} S$ (unitary equivalence of partial traces).
- The eigenvalues of ptr R are non-zero integers determining the Young diagrams of R.

Yang-Baxter characters of S_{∞}

- $S_{\infty}:=$ inductive lim. of $S_{n} \subset S_{n+1} \subset \ldots=$ infinite symmetric grp

Yang-Baxter characters of S_{∞}

- $S_{\infty}:=$ inductive lim. of $S_{n} \subset S_{n+1} \subset \ldots=$ infinite symmetric grp
- S_{∞} is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]

Yang-Baxter characters of S_{∞}

- $S_{\infty}:=$ inductive lim. of $S_{n} \subset S_{n+1} \subset \ldots=$ infinite symmetric grp
- S_{∞} is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]
- The $\rho_{R}^{(n)}$ define a hom. into infinite tensor product

$$
\rho_{R}: S_{\infty} \rightarrow \bigotimes_{n \geq 1} \text { End } V
$$

Yang-Baxter characters of S_{∞}

- $S_{\infty}:=$ inductive lim. of $S_{n} \subset S_{n+1} \subset \ldots=$ infinite symmetric grp
- S_{∞} is a "wild" group. Representation theory [Borodin, Kerov, Okounkov, Olshanski, Thoma, Vershik,]
- The $\rho_{R}^{(n)}$ define a hom. into infinite tensor product

$$
\rho_{R}: S_{\infty} \rightarrow \bigotimes_{n \geq 1} \text { End } V
$$

- Normalized trace on tensor products ($d=\operatorname{dim} V$):

$$
\tau=\frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \ldots
$$

- Given $R \in \mathcal{R}_{0}$,

$$
\chi_{R}:=\tau \circ \rho_{R}: S_{\infty} \longrightarrow \mathbb{C}
$$

is a (normalized) character of S_{∞} ("Yang-Baxter character").

Special property of Yang-Baxter characters: χ_{R} "factorizes": For $\sigma, \sigma^{\prime} \in S_{\infty}$ with disjoint supports,

$$
\chi_{R}\left(\sigma \sigma^{\prime}\right)=\chi_{R}(\sigma) \cdot \chi_{R}\left(\sigma^{\prime}\right) .
$$

Special property of Yang-Baxter characters: χ_{R} "factorizes": For $\sigma, \sigma^{\prime} \in S_{\infty}$ with disjoint supports,

$$
\chi_{R}\left(\sigma \sigma^{\prime}\right)=\chi_{R}(\sigma) \cdot \chi_{R}\left(\sigma^{\prime}\right) .
$$

Theorem [Thoma 1964]

- A character χ of S_{∞} is extremal if and only if it factorizes.
- $\mathbb{T}:=$ all real sequences $\left\{\alpha_{i}\right\}_{i},\left\{\beta_{i}\right\}_{i}$ such that
- $\alpha_{i} \geq \alpha_{i+1} \geq 0, \beta_{i} \geq \beta_{i+1} \geq 0$
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1$

Extremal characters are in 1: 1 correspondence with \mathbb{T} via

$$
\chi(n \text {-cycle })=\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}, \quad n \geq 2 .
$$

Special property of Yang-Baxter characters: χ_{R} "factorizes": For $\sigma, \sigma^{\prime} \in S_{\infty}$ with disjoint supports,

$$
\chi_{R}\left(\sigma \sigma^{\prime}\right)=\chi_{R}(\sigma) \cdot \chi_{R}\left(\sigma^{\prime}\right) .
$$

Theorem [Thoma 1964]

- A character χ of S_{∞} is extremal if and only if it factorizes.
- $\mathbb{T}:=$ all real sequences $\left\{\alpha_{i}\right\}_{i},\left\{\beta_{i}\right\}_{i}$ such that
- $\alpha_{i} \geq \alpha_{i+1} \geq 0, \beta_{i} \geq \beta_{i+1} \geq 0$
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1$

Extremal characters are in 1: 1 correspondence with \mathbb{T} via

$$
\chi(n \text {-cycle })=\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}, \quad n \geq 2 .
$$

- Each R defines a point $(\alpha, \beta) \in \mathbb{T}$. The α_{i}, β_{i} are the good parameters to characterize R.

Which α, β are realized by Yang-Baxter characters?

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character $\chi_{R}, R \in \mathcal{R}_{0}$, if and only if
(1) only finitely many α_{i}, β_{i} are non-zero,
(2) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, and
(3) all α_{i}, β_{i} are rational.

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character $\chi_{R}, R \in \mathcal{R}_{0}$, if and only if
(1) only finitely many α_{i}, β_{i} are non-zero,
(2) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, and
(3) all α_{i}, β_{i} are rational.

- the proof of (1) and (2) relies on a result of [Wassermann 1981]
- the proof of (3) is more difficult (subfactors)

Which α, β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S_{∞}

Thoma parameters $(\alpha, \beta) \in \mathbb{T}$ are given by a Yang-Baxter character $\chi_{R}, R \in \mathcal{R}_{0}$, if and only if
(1) only finitely many α_{i}, β_{i} are non-zero,
(2) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, and
(3) all α_{i}, β_{i} are rational.

- the proof of (1) and (2) relies on a result of [Wassermann 1981]
- the proof of (3) is more difficult (subfactors)

Example: $B, F \in \mathbb{N}_{0}$

$$
\alpha_{1}=\ldots=\alpha_{B}=\beta_{1}=\ldots=\beta_{F}=\frac{1}{B+F}
$$

This YB-character appears in superselection theory
[Doplicher, Haag, Roberts 1971]

Yang-Baxter subfactors

$R \in \mathcal{R}_{0}$

- Normalized trace $\tau=$ state on the *-algebra generated by all R_{i}, $i \in \mathbb{N}$.
- In GNS representation:

$$
\mathcal{M}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \in \mathbb{N}\right\}^{\prime \prime}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).

Yang-Baxter subfactors

$R \in \mathcal{R}_{0}$

- Normalized trace $\tau=$ state on the *-algebra generated by all R_{i}, $i \in \mathbb{N}$.
- In GNS representation:

$$
\mathcal{M}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \in \mathbb{N}\right\}^{\prime \prime}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).
- Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

Yang-Baxter subfactors

$R \in \mathcal{R}_{0}$

- Normalized trace $\tau=$ state on the *-algebra generated by all R_{i}, $i \in \mathbb{N}$.
- In GNS representation:

$$
\mathcal{M}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \in \mathbb{N}\right\}^{\prime \prime}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).
- Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

generates subfactor

$$
\mathcal{N}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}^{>}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \geq 2\right\}^{\prime \prime} \subset \mathcal{M}_{R} .
$$

Yang-Baxter subfactors

$R \in \mathcal{R}_{0}$

- Normalized trace $\tau=$ state on the *-algebra generated by all R_{i}, $i \in \mathbb{N}$.
- In GNS representation:

$$
\mathcal{M}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \in \mathbb{N}\right\}^{\prime \prime}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).
- Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

generates subfactor

$$
\mathcal{N}_{R}:=\pi_{\tau}\left(\rho_{R}\left(S_{\infty}^{>}\right)\right)^{\prime \prime}=\left\{\pi_{\tau}\left(R_{i}\right): i \geq 2\right\}^{\prime \prime} \subset \mathcal{M}_{R}
$$

- $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R}=\mathbb{C}$ if and only if $R \in\{ \pm 1, \pm F\}$

The τ-preserving conditional expectation E of $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$ can be computed.

Essential results:

The τ-preserving conditional expectation E of $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$ can be computed.

Essential results:

(1) $E\left(\pi_{\tau}\left(R_{1}\right)\right)=\operatorname{ptr}(R) \otimes 1 \otimes 1 \otimes \ldots$

The τ-preserving conditional expectation E of $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$ can be computed.

Essential results:

(1) $E\left(\pi_{\tau}\left(R_{1}\right)\right)=p \operatorname{tr}(R) \otimes 1 \otimes 1 \otimes \ldots$
(2) Using results from [Gohm-Köstler 2010],

$$
\chi_{R}(n-\text { cycle })=\tau\left(\operatorname{ptr}(R)^{n-1}\right), \quad n \geq 2 .
$$

The τ-preserving conditional expectation E of $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$ can be computed.

Essential results:

(1) $E\left(\pi_{\tau}\left(R_{1}\right)\right)=p \operatorname{tr}(R) \otimes 1 \otimes 1 \otimes \ldots$
(2) Using results from [Gohm-Köstler 2010],

$$
\chi_{R}(n-\text { cycle })=\tau\left(\operatorname{ptr}(R)^{n-1}\right), \quad n \geq 2 .
$$

- With these results, one can prove Thm. II and Thm. III

Normal form R-matrices

- So far: Given R, can compute α_{i}, β_{i} as eigenvalues of $\operatorname{ptr}(R) / d$.

Normal form R-matrices

- So far: Given R, can compute α_{i}, β_{i} as eigenvalues of $p \operatorname{tr}(R) / d$.
- Now: Given finitely many rational $0 \leq \alpha_{i}, \beta_{i} \leq 1$ such that $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, construct R with these parameters.

Normal form R-matrices

- So far: Given R, can compute α_{i}, β_{i} as eigenvalues of $\operatorname{ptr}(R) / d$.
- Now: Given finitely many rational $0 \leq \alpha_{i}, \beta_{i} \leq 1$ such that $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, construct R with these parameters.
- Plan: Build R-matrix from simple blocks by "direct sum"

Setting: V, W Hilbert spaces, $X \in \operatorname{End}(V \otimes V), Y \in \operatorname{End}(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

Setting: V, W Hilbert spaces, $X \in \operatorname{End}(V \otimes V), Y \in \operatorname{End}(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

as

$$
\begin{aligned}
X \oplus Y & =X \oplus Y \oplus F \quad \text { on } \\
(V \oplus W) \otimes(V \oplus W) & =(V \otimes V) \oplus(W \otimes W) \oplus((V \otimes W) \oplus(W \otimes V)) .
\end{aligned}
$$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Setting: V, W Hilbert spaces, $X \in \operatorname{End}(V \otimes V), Y \in E n d(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

as

$$
\begin{aligned}
& X \oplus Y=X \oplus Y \oplus F \quad \text { on } \\
&(V \oplus W) \otimes(V \oplus W)=(V \otimes V) \oplus(W \otimes W) \oplus((V \otimes W) \oplus(W \otimes V)) . \\
& \text { [Lyubashenko 87, Gurevich 91, Hietarinta 93] }
\end{aligned}
$$

Proposition

- \boxplus is commutative and associative.
- \boxplus preserves the YBE: $R, S \in \mathcal{R}_{0} \Rightarrow R \boxplus S \in \mathcal{R}_{0}$.
- $\operatorname{ptr}(R \boxplus S)=p \operatorname{tr} R \oplus \operatorname{ptr} S$.

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \text {. } 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \text {. } \quad\left(-1_{d_{m}^{-}}\right) .
$$

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \boxplus 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \boxplus\left(-1_{d_{m}^{-}}\right) .
$$

- Let $d:=d_{1}^{+}+\ldots+d_{n}^{+}+d_{1}^{-}+\ldots+d_{m}^{-}$. Then χ_{N} has Thoma parameters

$$
\alpha_{i}=\frac{d_{i}^{+}}{d}, \quad \beta_{j}=\frac{d_{j}^{-}}{d} .
$$

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \boxplus 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \boxplus\left(-1_{d_{m}^{-}}\right) .
$$

- Let $d:=d_{1}^{+}+\ldots+d_{n}^{+}+d_{1}^{-}+\ldots+d_{m}^{-}$. Then χ_{N} has Thoma parameters

$$
\alpha_{i}=\frac{d_{i}^{+}}{d}, \quad \beta_{j}=\frac{d_{j}^{-}}{d} .
$$

- This leads to the proof of Thm. I.

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \text {. } 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \text {. } \quad\left(-1_{d_{m}^{-}}\right) .
$$

- Let $d:=d_{1}^{+}+\ldots+d_{n}^{+}+d_{1}^{-}+\ldots+d_{m}^{-}$. Then χ_{N} has Thoma parameters

$$
\alpha_{i}=\frac{d_{i}^{+}}{d}, \quad \beta_{j}=\frac{d_{j}^{-}}{d} .
$$

- This leads to the proof of Thm. I.

Example: $\mathcal{R}_{0}\left(\mathbb{C}^{2}\right) / \sim$ has 5 elements:

Repitition

Involutive R-matrices are governed by the following rules:
(~) There is a natural equivalence in terms of S_{∞}-representations.
(I) $\mathcal{R}_{0} / \sim \cong(\mathbb{Y} \times \mathbb{Y}) \backslash\{(\varnothing, \varnothing)\}$.
(II) $R \sim S \Longleftrightarrow \operatorname{ptr} R \cong \operatorname{ptr} S$.
(III) Thoma parameters (α, β) of Yang-Baxter characters are characterized by:
(1) only finitely many α_{i}, β_{i} are non-zero,
(2) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, and
(3) all α_{i}, β_{i} are rational.
(N) In each equivalence class, one can construct an explicit representative by using \boxplus.

Outlook

The following generalizations are on our agenda:

- Introduce a spectral parameter \longrightarrow QFT!
- Drop the assumption $R^{2}=1 \longrightarrow$ braid groups!

