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The Yang-Baxter equation (YBE)

V: finite-dimensional vector space, R ∶ V⊗ V→ V⊗ V linear.

The YBE is the algebraic equation

(R⊗ idV)(idV⊗R)(R⊗ idV) = (idV⊗R)(R⊗ idV)(idV⊗R)

in End(V⊗ V⊗ V).

Graphical representation:
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Everybody likes the YBE

The YBE appears in a remarkable number of fields:

● Statistical mechanics
● Quantum mechanics
● Integrable QFT
● Braid groups
● Knot theory
● Quantum groups
● Subfactors
● Quantum information theory
● Electric networks
● . . .

Independent of the field of application, one is often
interested in the solutions to the YBE.
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Solving the YBE

(R⊗ idV)(idV⊗R)(R⊗ idV) = (idV⊗R)(R⊗ idV)(idV⊗R)

After fixing a basis of V, the YBE amounts to (dimV)6 cubic
equations for (dimV)4 unknowns.

● completely solved in dimV = 2 with computer algebra
[Hietarinta 1992]

● but this did not work already for dimV = 3 [Hietarinta 1993]

● Quantum groups [Drinfeld 86, Jimbo 86, ... ] give many solutions
of the YBE, but not a complete solution theory.

● Here: Consider solutions of YBE up to equivalence relation
suggested by group theory and integrable AQFT [Alazzawi, GL
2017] .
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The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)
V ∶ finite-dim. Hilbert space. An R-matrix is a unitary R ∈ End(V⊗ V)
that solves the YBE and satisfies R2 = 1.

Such involutive R’s appear in

● elastic two-body S-matrices in integrable QFT

● symmetries of categories of vector spaces [Lyubashenko 1987]

● representations of Thompson’s group V [Jones 2016]

● constructions of certain non-commutative spaces
[Dubois-Violette, Landi 2017]

● ...
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The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)
V ∶ finite-dim. Hilbert space. An R-matrix is a unitary R ∈ End(V⊗ V)
that solves the YBE and satisfies R2 = 1.

● R0 ∶= set of all R-matrices (with any V)
● Sn ∶= symmetric group of n letters. Generators σi, i = 1, ..,n − 1
satisfy

σi+1σiσi+1 = σiσi+1σi
σiσj = σjσi, ∣i − j∣ > 1
σ2i = e.

● Any R ∈R0 gives unitary rep. ρ(n)R of Sn on V⊗n via

ρ
(n)
R (σi) ∶= id

⊗(i−1)
V ⊗R⊗ id⊗(n−i−1)V
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Equivalent R-matrices

Definition
R,S ∈R0 are called equivalent, written

R ∼ S,

if

ρ
(n)
R ≅ ρ(n)S for all n ∈ N .

(unitary equivalence of Sn-representations)

● Example: R ∈R0(V), U ∶ V→ V unitary. Then

R ∼ (U⊗ U)R(U−1 ⊗ U−1)

But this does not exhaust the equivalence class of [R].
● Aim: Determine all R-matrices up to equivalence ∼.
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R-matrices and Young diagrams

● Recall Young diagrams = integer partitions

= 3 + 2 + 1, = 1 + 1 + 1 + 1, = 5 + 2 + 2 . . .

● Y: Set of all Young diagrams.

Theorem I: Structure ofR0/∼

▶ Equivalence classes of R-matrices are in 1 : 1 correspondence
with pairs of Young diagrams:

R0/∼ ≅ (Y ×Y)/{(∅,∅)}

▶ Dimension = total number of boxes in the two diagrams.

▶ To each pair (Y,Y′) of diagrams, an explicit normal form
R-matrix RY,Y′ ∈R0 can be constructed.
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Partial traces of R-matrices

● Recall the partial trace ptr ∶ End(V⊗ V)→ End(V) defined by

ptr(A⊗ B) ∶= Tr(A) ⋅ B .

Theorem II: Characterization of ∼
R,S ∈R0.

▶ R ∼ S ⇐⇒ ptrR ≅ ptrS (unitary equivalence of partial traces).

▶ The eigenvalues of ptrR are non-zero integers determining the
Young diagrams of R.

Example: R = ( , )

eigenvalue multiplicity
+4 4×1
+2 2×2
−3 3×2
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Yang-Baxter characters of S∞

● S∞ ∶= inductive lim. of Sn ⊂ Sn+1 ⊂ ... = infinite symmetric grp

● S∞ is a “wild” group. Representation theory [Borodin, Kerov,
Okounkov, Olshanski, Thoma, Vershik, .... ]

● The ρ
(n)
R define a hom. into infinite tensor product

ρR ∶ S∞ →⊗
n≥1
EndV

● Normalized trace on tensor products (d = dimV):

τ = TrVd ⊗
TrV
d ⊗

TrV
d ⊗ . . .

● Given R ∈R0,

χR ∶= τ ○ ρR ∶ S∞ Ð→ C

is a (normalized) character of S∞ (“Yang-Baxter character”).
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Special property of Yang-Baxter characters: χR “factorizes”: For
σ,σ′ ∈ S∞ with disjoint supports,

χR(σσ′) = χR(σ) ⋅ χR(σ′) .

Theorem [Thoma 1964]

▶ A character χ of S∞ is extremal if and only if it factorizes.

▶ T ∶= all real sequences {αi}i, {βi}i such that

● αi ≥ αi+1 ≥ 0, βi ≥ βi+1 ≥ 0
● ∑i(αi + βi) ≤ 1

Extremal characters are in 1 : 1 correspondence with T via

χ(n-cycle) =∑
i
αni + (−1)

n+1∑
i
βni , n ≥ 2.

● Each R defines a point (α,β) ∈ T. The αi, βi are the good
parameters to characterize R.

12
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Which α,β are realized by Yang-Baxter characters?

Theorem III: Yang-Baxter characters of S∞
Thoma parameters (α,β) ∈ T are given by a Yang-Baxter character
χR, R ∈R0, if and only if

(1) only finitely many αi, βi are non-zero,

(2) ∑i(αi + βi) = 1, and

(3) all αi, βi are rational.

● the proof of (1) and (2) relies on a result of [Wassermann 1981]

● the proof of (3) is more difficult (subfactors)

Example: B, F ∈ N0

α1 = ... = αB = β1 = ... = βF =
1

B + F
This YB-character appears in superselection theory
[Doplicher, Haag, Roberts 1971]
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Yang-Baxter subfactors

R ∈R0

● Normalized trace τ = state on the ∗-algebra generated by all Ri,
i ∈ N.

● In GNS representation:

MR ∶= πτ(ρR(S∞))′′ = {πτ(Ri) ∶ i ∈ N}′′

● As χR is extremal,MR is a factor (II1 unless R = ±1).

● Subgroup
S>∞ ∶= {σ ∈ S∞ ∶ σ(1) = 1} ⊂ S∞

generates subfactor
NR ∶= πτ(ρR(S>∞))′′ = {πτ(Ri) ∶ i ≥ 2}′′ ⊂MR .

● N ′R ∩MR = C if and only if R ∈ {±1,±F}
[Gohm-Köstler 2010, Yamashita 2012]
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The τ-preserving conditional expectation E of N ′R ∩MR ⊂MR can be
computed.

Essential results:

(1) E(πτ(R1)) = ptr(R)⊗ 1⊗ 1⊗ . . .

(2) Using results from [Gohm-Köstler 2010],

χR(n-cycle) = τ(ptr(R)n−1), n ≥ 2.

● With these results, one can prove Thm. II and Thm. III
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Normal form R-matrices

● So far: Given R, can compute αi, βi as eigenvalues of ptr(R)/d.

● Now: Given finitely many rational 0 ≤ αi, βi ≤ 1 such that
∑i(αi + βi) = 1, construct R with these parameters.

● Plan: Build R-matrix from simple blocks by “direct sum”

16
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Setting: V,W Hilbert spaces, X ∈ End(V⊗ V), Y ∈ End(W⊗W).
Define

X⊞Y ∈ End((V⊕W)⊗ (V⊕W))

as

X ⊞ Y = X⊕ Y⊕ F on
(V⊕W)⊗ (V⊕W) = (V⊗ V)⊕ (W⊗W)⊕ ((V⊗W)⊕ (W⊗ V)).

[Lyubashenko 87, Gurevich 91, Hietarinta 93]
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Let d+1 , . . . ,d+n ,d−1 , . . . ,d−m ∈ N. Normal form R-matrix
N ∶= 1d+1 ⊞ . . . ⊞ 1d+n ⊞ (−1d−1 ) ⊞ . . . ⊞ (−1d−m).

▶ Let d ∶= d+1 + . . . + d+n + d−1 + . . . + d−m. Then χN has Thoma
parameters

αi =
d+i
d , βj =

d−j
d .

● This leads to the proof of Thm. I.

Example: R0(C2)/ ∼ has 5 elements:

⎛
⎜⎜⎜⎜
⎝

±
±
±
±

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

±
±

±
±

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

+
+

+
−

⎞
⎟⎟⎟⎟
⎠

( ,∅), (∅, ) ( ,∅), (∅, ) ( , )
α1 = 1, β1 = 1 α1 = α2 = 1

2 , β1 = β2 =
1
2 α1 = β1 = 1

2
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Repitition

Involutive R-matrices are governed by the following rules:

(∼) There is a natural equivalence in terms of S∞-representations.

(I) R0/∼ ≅ (Y ×Y)/{(∅,∅)}.

(II) R ∼ S ⇐⇒ ptrR ≅ ptrS.

(III) Thoma parameters (α,β) of Yang-Baxter characters are
characterized by:

(1) only finitely many αi, βi are non-zero,
(2) ∑i(αi + βi) = 1, and
(3) all αi, βi are rational.

(N) In each equivalence class, one can construct an explicit
representative by using ⊞.

19



Outlook

The following generalizations are on our agenda:

● Introduce a spectral parameter Ð→ QFT!
● Drop the assumption R2 = 1 Ð→ braid groups!
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