Yang-Baxter Representations of the Infinite Symmetric Group

Gandalf Lechner
joint work with Ulrich Pennig and Simon Wood

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & 0
\end{array}
$$

The Yang-Baxter equation and the infinite symmetric group

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\bullet & \ldots .
\end{array}
$$

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{aligned}
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array} \\
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
& \sigma_{i}^{2}=e \\
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j|>1
\end{aligned}
$$

The Yang-Baxter equation and the infinite symmetric group

The Yang-Baxter equation and the infinite symmetric group

The Yang-Baxter equation and the infinite symmetric group

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\bullet \\
\bullet \\
\mathrm{~V}
\end{array} \stackrel{\mathrm{~V}}{\bullet} \otimes \mathrm{~V} \otimes \stackrel{\mathrm{~V}}{\bullet} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \stackrel{. . .}{ }
$$

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{aligned}
& R \in E n d(V \otimes V)
\end{aligned}
$$

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{aligned}
& \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\bullet \\
\bullet & \ldots . \\
\mathbf{V} \otimes \mathrm{V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes & \ldots .
\end{array} \\
& \mathrm{R}_{1}=\mathrm{R} \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \ldots \\
& \mathrm{R}_{2}=1 \otimes \mathrm{R} \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \ldots . \\
& \mathrm{R} \in \operatorname{End}(\mathrm{~V} \otimes \mathrm{~V})
\end{aligned}
$$

The Yang-Baxter equation and the infinite symmetric group

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\bullet & \ldots . .
\end{array} \\
& \mathbf{V} \otimes \mathrm{V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \mathrm{~V} \otimes \ldots . \\
& \mathrm{R}_{1}=\mathrm{R} \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \cdots \\
& R_{2}=1 \otimes R \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \ldots \\
& \mathrm{R} \in \operatorname{End}(\mathrm{~V} \otimes \mathrm{~V})
\end{aligned}
$$

Yang-Baxter equation:

$$
R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2} .
$$

The Yang-Baxter equation and the infinite symmetric group

The Yang-Baxter equation and the infinite symmetric group

Definition (for purpose of this talk)
V : finite-dim. Hilbert space. An R-matrix is a unitary
$R \in \operatorname{End}(V \otimes V)$ such that $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$ and $R^{2}=1$.

The Yang-Baxter equation and the infinite symmetric group

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary
$R \in \operatorname{End}(V \otimes V)$ such that $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$ and $R^{2}=1$.

- $\mathcal{R}_{0}:=$ set of all R-matrices (with any V)

The Yang-Baxter equation and the infinite symmetric group

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An R-matrix is a unitary
$R \in E n d(V \otimes V)$ such that $R_{1} R_{2} R_{1}=R_{2} R_{1} R_{2}$ and $R^{2}=1$.

- $\mathcal{R}_{0}:=$ set of all R-matrices (with any V)
- Any $R \in \mathcal{R}_{0}$ gives unitary rep. $\rho_{R}^{(n)}$ of S_{n} on $V^{\otimes n} v i a$

$$
\begin{aligned}
& \rho_{R}^{(n)}\left(\sigma_{i}\right):=R_{i}, \quad i=1, \ldots, n-1 \\
& \rho_{R}: S_{\infty} \rightarrow \bigotimes_{n \geq 1} \text { End } V
\end{aligned}
$$

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent,

$$
R \sim S,
$$

if for each n, the S_{n}-representations $\rho_{R}^{(n)} \cong \rho_{S}^{(n)}$ are equivalent.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent,

$$
R \sim S,
$$

if for each n, the S_{n}-representations $\rho_{R}^{(n)} \cong \rho_{S}^{(n)}$ are equivalent.

Simple observations:

- $R \sim S \Longrightarrow \operatorname{dim} R=\operatorname{dim} S, \operatorname{Tr} R=\operatorname{Tr} S$.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

$R, S \in \mathcal{R}_{0}$ are called equivalent,

$$
R \sim S,
$$

if for each n, the S_{n}-representations $\rho_{R}^{(n)} \cong \rho_{S}^{(n)}$ are equivalent.

Simple observations:

- $R \sim S \Longrightarrow \operatorname{dim} R=\operatorname{dim} S, \operatorname{Tr} R=\operatorname{Tr} S$.
- For each $A \in G L(V)$,

$$
\begin{aligned}
& R \sim(A \otimes A) R\left(A^{-1} \otimes A^{-1}\right) \\
& R \sim F R F
\end{aligned}
$$

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_{0} / \sim and a representative in each equivalence class.

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_{0} / \sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_{0}$, how to efficiently decide whether $R \sim S$?

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_{0} / \sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_{0}$, how to efficiently decide whether $R \sim S$?

Question 3

Which reps ρ of S_{∞} are of the form $\rho \cong \rho_{R}$ for some $R \in \mathcal{R}_{0}$? ("Yang-Baxter representations")

Yang-Baxter characters of S_{∞}

Normalized trace on tensor products $(d=\operatorname{dim} V)$:

$$
\tau=\frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \ldots
$$

For each R,

$$
\chi_{R}:=\tau \circ \rho_{R}: S_{\infty} \longrightarrow \mathbb{C}
$$

is a (normalized) character of S_{∞}.

Yang-Baxter characters of S_{∞}

Normalized trace on tensor products ($d=\operatorname{dim} \mathrm{V}$):

$$
\tau=\frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \ldots
$$

For each R,

$$
\chi_{R}:=\tau \circ \rho_{R}: S_{\infty} \longrightarrow \mathbb{C}
$$

is a (normalized) character of S_{∞}.

- normalized character of $S_{\infty}=$ tracial state on $C^{*} S_{\infty}$

Yang-Baxter characters of S_{∞}

Normalized trace on tensor products ($d=\operatorname{dim} \mathrm{V}$):

$$
\tau=\frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \ldots
$$

For each R,

$$
\chi_{R}:=\tau \circ \rho_{R}: S_{\infty} \longrightarrow \mathbb{C}
$$

is a (normalized) character of S_{∞}.

- normalized character of $S_{\infty}=$ tracial state on $C^{*} S_{\infty}$
- On n-cycle $c_{n}: i_{1} \mapsto i_{2} \mapsto \ldots \mapsto i_{n} \mapsto i_{1}$, get

$$
\chi_{R}\left(c_{n}\right)=d^{-n} \operatorname{Tr}_{V \otimes n}\left(R_{1} \cdots R_{n-1}\right) .
$$

Yang-Baxter characters of S_{∞}

Normalized trace on tensor products $(d=\operatorname{dim} V)$:

$$
\tau=\frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \frac{\operatorname{Tr}_{V}}{d} \otimes \ldots
$$

For each R,

$$
\chi_{R}:=\tau \circ \rho_{R}: S_{\infty} \longrightarrow \mathbb{C}
$$

is a (normalized) character of S_{∞}.

- normalized character of $S_{\infty}=$ tracial state on $C^{*} S_{\infty}$
- On n-cycle $c_{n}: i_{1} \mapsto i_{2} \mapsto \ldots \mapsto i_{n} \mapsto i_{1}$, get

$$
\chi_{R}\left(c_{n}\right)=d^{-n} \operatorname{Tr}_{V \otimes n}\left(R_{1} \cdots R_{n-1}\right)
$$

- χ_{R} "factorizes": For $\sigma, \sigma^{\prime} \in S_{\infty}$ with disjoint supports,

$$
\chi_{R}\left(\sigma \sigma^{\prime}\right)=\chi_{R}(\sigma) \cdot \chi_{R}\left(\sigma^{\prime}\right)
$$

Theorem [Thoma '64]

(1) A character χ of S_{∞} is extremal if and only if it factorizes.
(2) $\mathbb{T}:=$ all real sequences $\left\{\alpha_{i}\right\}_{i},\left\{\beta_{i}\right\}_{i}$ such that

- $\alpha_{i} \geq \alpha_{i+1} \geq 0, \beta_{i} \geq \beta_{i+1} \geq 0$
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1$

Extremal characters are in 1:1 correspondence with \mathbb{T} via

$$
\chi\left(c_{n}\right)=\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}, \quad n \geq 2
$$

Theorem [Thoma '64]

(1) A character χ of S_{∞} is extremal if and only if it factorizes.
(2) $\mathbb{T}:=$ all real sequences $\left\{\alpha_{i}\right\}_{i},\left\{\beta_{i}\right\}_{i}$ such that

- $\alpha_{i} \geq \alpha_{i+1} \geq 0, \beta_{i} \geq \beta_{i+1} \geq 0$
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1$

Extremal characters are in 1:1 correspondence with \mathbb{T} via

$$
\chi\left(c_{n}\right)=\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}, \quad n \geq 2
$$

- Each R defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$
\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}=d^{-n} \operatorname{Tr}_{V \otimes n}\left(R_{1} \cdots R_{n-1}\right)
$$

Theorem [Thoma '64]

(1) A character χ of S_{∞} is extremal if and only if it factorizes.
(2) $\mathbb{T}:=$ all real sequences $\left\{\alpha_{i}\right\}_{i},\left\{\beta_{i}\right\}_{i}$ such that

- $\alpha_{i} \geq \alpha_{i+1} \geq 0, \beta_{i} \geq \beta_{i+1} \geq 0$
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1$

Extremal characters are in 1:1 correspondence with \mathbb{T} via

$$
\chi\left(c_{n}\right)=\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}, \quad n \geq 2
$$

- Each R defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$
\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}=d^{-n} \operatorname{Tr}_{V \otimes n}\left(R_{1} \cdots R_{n-1}\right)
$$

- Which Thoma parameters are realized by Yang-Baxter characters?
- YB representations ρ_{R} are small: S_{n}-rep $\rho_{R}^{(n)}$ has only dimension d^{n}.
- Consequence: ρ_{R} is not faithful as a representation of the group algebra.
- YB representations ρ_{R} are small: S_{n}-rep $\rho_{R}^{(n)}$ has only dimension d^{n}.
- Consequence: ρ_{R} is not faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of $C^{*} S_{\infty}$ is faithful if and only if (1) or (2):
(1) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)<1$.
(2) Infinitely many Thoma parameters are non-zero.

- YB representations ρ_{R} are small: S_{n}-rep $\rho_{R}^{(n)}$ has only dimension d^{n}.
- Consequence: ρ_{R} is not faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of $C^{*} S_{\infty}$ is faithful if and only if (1) or (2):
(1) $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)<1$.
(2) Infinitely many Thoma parameters are non-zero.

- Thus: Thoma parameters (α, β) of a YB character satisfy $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$, and only finitely many are non-zero.

Yang-Baxter subfactors

Yang-Baxter subfactors

Notation:

$$
\begin{aligned}
\mathcal{E} & :=\bar{\bigotimes}_{n \geq 1} \operatorname{End} V^{\tau} \\
\mathcal{M}_{R} & :=\rho_{R}\left(S_{\infty}\right)^{\prime \prime}=\left\{R_{i}: i \in \mathbb{N}\right\}^{\prime \prime} \subset \mathcal{E}
\end{aligned}
$$

Yang-Baxter subfactors

Notation:

$$
\begin{aligned}
& \mathcal{E}:=\widehat{\bigotimes}_{n \geq 1} \text { End } V \\
& \\
& \mathcal{M}_{R}:=\rho_{R}\left(S_{\infty}\right)^{\prime \prime}=\left\{R_{i}: i \in \mathbb{N}\right\}^{\prime \prime} \subset \mathcal{E}
\end{aligned}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).

Yang-Baxter subfactors

Notation:

$$
\begin{aligned}
\mathcal{E} & :=\bar{\bigotimes}_{n \geq 1} \operatorname{End} V^{\tau} \\
\mathcal{M}_{R} & :=\rho_{R}\left(S_{\infty}\right)^{\prime \prime}=\left\{R_{i}: i \in \mathbb{N}\right\}^{\prime \prime} \subset \mathcal{E}
\end{aligned}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).

Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

Yang-Baxter subfactors

Notation:

$$
\begin{aligned}
\mathcal{E} & :=\widehat{\bigotimes}_{n \geq 1} \operatorname{End} V^{\tau} \\
\mathcal{M}_{R} & :=\rho_{R}\left(S_{\infty}\right)^{\prime \prime}=\left\{R_{i}: i \in \mathbb{N}\right\}^{\prime \prime} \subset \mathcal{E}
\end{aligned}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).

Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

generates another subfactor

$$
\mathcal{N}_{R}:=\rho_{R}\left(S_{\infty}^{>}\right)^{\prime \prime}=\left\{R_{i}: i \geq 2\right\}^{\prime \prime} \subset \mathcal{M}_{R}
$$

Yang-Baxter subfactors

Notation:

$$
\begin{aligned}
\mathcal{E} & :=\bar{\bigotimes}_{n \geq 1} \operatorname{End} V^{\tau} \\
\mathcal{M}_{R} & :=\rho_{R}\left(S_{\infty}\right)^{\prime \prime}=\left\{R_{i}: i \in \mathbb{N}\right\}^{\prime \prime} \subset \mathcal{E}
\end{aligned}
$$

- As χ_{R} is extremal, \mathcal{M}_{R} is a factor ($\|_{1}$ unless $R= \pm 1$).

Subgroup

$$
S_{\infty}^{>}:=\left\{\sigma \in S_{\infty}: \sigma(1)=1\right\} \subset S_{\infty}
$$

generates another subfactor

$$
\mathcal{N}_{R}:=\rho_{R}\left(S_{\infty}^{>}\right)^{\prime \prime}=\left\{R_{i}: i \geq 2\right\}^{\prime \prime} \subset \mathcal{M}_{R}
$$

- $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R}=\mathbb{C}$ if and only if $R \in\{ \pm 1, \pm F\}$ [Gohm-Köstler 2010, Yamashita 2012]

Compare the subfactors

$$
\mathcal{N}_{R} \subset \mathcal{M}_{R}, \quad \mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}
$$

to tensor product subfactors

$$
1 \otimes \text { End } V \otimes \text { End } V \otimes \ldots \subset \mathcal{E} \quad \text { End } V=\text { End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}
$$

Compare the subfactors

$$
\mathcal{N}_{R} \subset \mathcal{M}_{R}, \quad \mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}
$$

to tensor product subfactors

$$
1 \otimes \text { End } V \otimes \text { End } V \otimes \ldots \subset \mathcal{E} \quad \text { End } V=\text { End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}
$$

In both cases, have τ-preserving conditional expectations:

- End $V \subset \mathcal{E}$: Cond. exp. $E=$ partial trace

$$
E: \mathcal{E} \longrightarrow \text { End } V, \quad E=\operatorname{id}_{\text {End } v} \otimes \tau \otimes \tau \otimes \ldots
$$

Compare the subfactors

$$
\mathcal{N}_{R} \subset \mathcal{M}_{R}, \quad \mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}
$$

to tensor product subfactors

$$
1 \otimes \text { End } V \otimes \text { End } V \otimes \ldots \subset \mathcal{E} \quad \text { End } V=\text { End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}
$$

In both cases, have τ-preserving conditional expectations:

- End $V \subset \mathcal{E}$: Cond. exp. $E=$ partial trace

$$
E: \mathcal{E} \longrightarrow \text { End } V, \quad E=\operatorname{id}_{\text {End } v} \otimes \tau \otimes \tau \otimes \ldots
$$

- $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$: Cond. exp. $E_{R}=$ limit of averaging over larger and larger subgroups of $S_{\infty}^{>}$.

Compare the subfactors

$$
\mathcal{N}_{R} \subset \mathcal{M}_{R}, \quad \mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}
$$

to tensor product subfactors

$$
1 \otimes \text { End } V \otimes \text { End } V \otimes \ldots \subset \mathcal{E} \quad \text { End } V=\text { End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}
$$

In both cases, have τ-preserving conditional expectations:

- End $V \subset \mathcal{E}$: Cond. exp. $E=$ partial trace

$$
E: \mathcal{E} \longrightarrow \text { End } V, \quad E=\operatorname{id}_{\text {End } v} \otimes \tau \otimes \tau \otimes \ldots
$$

- $\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \subset \mathcal{M}_{R}$: Cond. exp. $E_{R}=$ limit of averaging over larger and larger subgroups of $S_{\infty}^{>}$.

$$
\begin{gathered}
\text { End } V \longleftarrow E \\
\\
\mathcal{N}_{R}^{\prime} \cap \mathcal{M}_{R} \stackrel{\mathcal{E}}{\longleftarrow}{ }^{E_{R}} \mathcal{M}_{R}
\end{gathered}
$$

Proposition

$E\left(R_{1}\right)=E_{R}\left(R_{1}\right)$.

Proposition

$E\left(R_{1}\right)=E_{R}\left(R_{1}\right)$.
With arguments from [Gohm-Köstler 2010], one then gets
Theorem
Let $c_{n} \in S_{\infty}$ be an n-cycle, $n \geq 2$. Then

$$
\chi_{R}\left(c_{n}\right)=\tau\left(E\left(R_{1}\right)^{n-1}\right)
$$

Proposition

$$
E\left(R_{1}\right)=E_{R}\left(R_{1}\right) .
$$

With arguments from [Gohm-Köstler 2010], one then gets

Theorem

Let $c_{n} \in S_{\infty}$ be an n-cycle, $n \geq 2$. Then

$$
\chi_{R}\left(c_{n}\right)=\tau\left(E\left(R_{1}\right)^{n-1}\right)
$$

Theorem: Characterization of ~

Define the "usual partial trace" of R as

$$
\begin{aligned}
\mathrm{ptr} R & :=\left(\mathrm{id}_{\mathrm{End} v} \otimes \operatorname{Tr}_{V}\right)(R) . \\
\Rightarrow \chi_{R}\left(c_{n}\right) & =d^{-n} \operatorname{Tr}_{v}\left(\operatorname{ptr}(R)^{n-1}\right) .
\end{aligned}
$$

$R \sim S$ if and only if $\operatorname{ptr} R \cong \operatorname{ptr} S$.

partial trace in $d=2$:

$$
\left(\begin{array}{cccc}
a & b & a^{\prime} & b^{\prime} \\
c & d & c^{\prime} & d^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & a^{\prime \prime \prime} & b^{\prime \prime \prime} \\
c^{\prime \prime} & d^{\prime \prime} & c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right)
$$

partial trace in $d=2$:

$$
\left(\begin{array}{cc|cc}
a & b & a^{\prime} & b^{\prime} \\
c & d & c^{\prime} & d^{\prime} \\
\hline a^{\prime \prime} & b^{\prime \prime} & a^{\prime \prime \prime} & b^{\prime \prime \prime} \\
c^{\prime \prime} & d^{\prime \prime} & c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right)
$$

partial trace in $d=2$:

$$
\left(\begin{array}{cc|cc}
a & b & a^{\prime} & b^{\prime} \\
c & d & c^{\prime} & d^{\prime} \\
\hline a^{\prime \prime} & b^{\prime \prime} & a^{\prime \prime \prime} & b^{\prime \prime \prime} \\
c^{\prime \prime} & d^{\prime \prime} & c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right) \longmapsto\left(\begin{array}{cc}
a+d & a^{\prime}+d^{\prime} \\
a^{\prime \prime}+d^{\prime \prime} & a^{\prime \prime \prime}+d^{\prime \prime \prime}
\end{array}\right)
$$

partial trace in $d=2$:

$$
\left(\begin{array}{cc|cc}
a & b & a^{\prime} & b^{\prime} \\
c & d & c^{\prime} & d^{\prime} \\
\hline a^{\prime \prime} & b^{\prime \prime} & a^{\prime \prime \prime} & b^{\prime \prime \prime} \\
c^{\prime \prime} & d^{\prime \prime} & c^{\prime \prime \prime} & d^{\prime \prime \prime}
\end{array}\right) \longmapsto\left(\begin{array}{cc}
a+d & a^{\prime}+d^{\prime} \\
a^{\prime \prime}+d^{\prime \prime} & a^{\prime \prime \prime}+d^{\prime \prime \prime}
\end{array}\right)
$$

spectrum of partial trace of R determines equivalence class $[R]$.
spectral characterizations also appear in [Okounkov 99]

Write

$$
\chi_{R}\left(c_{n}\right)=d^{-n} \operatorname{Tr} v\left(\operatorname{ptr}(R)^{n-1}\right)
$$

in Thoma parameters (α, β) of R and eigenvalues t_{j} of $p \operatorname{tr} R$:

$$
\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}=d^{-n} \sum_{j} t_{j}^{n-1}
$$

This implies:

Write

$$
\chi_{R}\left(c_{n}\right)=d^{-n} \operatorname{Tr} v\left(\operatorname{ptr}(R)^{n-1}\right)
$$

in Thoma parameters (α, β) of R and eigenvalues t_{j} of $p \operatorname{tr} R$:

$$
\sum_{i} \alpha_{i}^{n}+(-1)^{n+1} \sum_{i} \beta_{i}^{n}=d^{-n} \sum_{j} t_{j}^{n-1}
$$

This implies:

Corollary

The Thoma parameters of a YB character are rational.

Normal form R-matrices

So far:

(1) $R \sim S$ if and only if $p \operatorname{tr} R \cong \operatorname{ptr} S$.
(2) Thoma parameters of YB characters lie in $\mathbb{T}_{\mathrm{YB}} \subset \mathbb{T}$, defined by:

- Only finitely many α_{i}, β_{i} are non-zero
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$
- $\alpha_{i}, \beta_{i} \in \mathbb{Q}$

Normal form R-matrices

So far:

(1) $R \sim S$ if and only if $p \operatorname{tr} R \cong \operatorname{ptr} S$.
(2) Thoma parameters of YB characters lie in $\mathbb{T}_{\mathrm{YB}} \subset \mathbb{T}$, defined by:

- Only finitely many α_{i}, β_{i} are non-zero
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$
- $\alpha_{i}, \beta_{i} \in \mathbb{Q}$

Now:

- Given $(\alpha, \beta) \in \mathbb{T}_{\mathrm{YB}}$, construct R with these parameters.

Normal form R-matrices

So far:

(1) $R \sim S$ if and only if $\operatorname{ptr} R \cong \operatorname{ptr} S$.
(2) Thoma parameters of $Y B$ characters lie in $\mathbb{T}_{\mathrm{YB}} \subset \mathbb{T}$, defined by:

- Only finitely many α_{i}, β_{i} are non-zero
- $\sum_{i}\left(\alpha_{i}+\beta_{i}\right)=1$
- $\alpha_{i}, \beta_{i} \in \mathbb{Q}$

Now:

- Given $(\alpha, \beta) \in \mathbb{T}_{\mathrm{YB}}$, construct R with these parameters.
- Plan: Build R-matrix from simple blocks by "direct sum"

Setting: V, W Hilbert spaces, $X \in E n d(V \otimes V), Y \in E n d(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

Setting: V, W Hilbert spaces, $X \in E n d(V \otimes V), Y \in E n d(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

as

$$
\begin{aligned}
X \boxplus Y & =X \oplus Y \oplus F \quad \text { on } \\
(V \oplus W) \otimes(V \oplus W) & =(V \otimes V) \oplus(W \otimes W) \oplus((V \otimes W) \oplus(W \otimes V))
\end{aligned}
$$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Setting: V, W Hilbert spaces, $X \in E n d(V \otimes V), Y \in E n d(W \otimes W)$. Define

$$
X \boxplus Y \in \operatorname{End}((V \oplus W) \otimes(V \oplus W))
$$

as

$$
\begin{aligned}
X \boxplus Y & =X \oplus Y \oplus F \quad \text { on } \\
(V \oplus W) \otimes(V \oplus W) & =(V \otimes V) \oplus(W \otimes W) \oplus((V \otimes W) \oplus(W \otimes V))
\end{aligned}
$$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

- \boxplus is commutative and associative.
- \boxplus preserves the YBE: $R, S \in \mathcal{R}_{0} \Rightarrow R \boxplus S \in \mathcal{R}_{0}$.
- $\operatorname{ptr}(R \boxplus S)=\operatorname{ptr} R \oplus \operatorname{ptr} S$.

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix (with dimensions $\left.d^{+}, d^{-}\right)$is defined as

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \boxplus 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \boxplus\left(-1_{d_{m}^{-}}\right) .
$$

Let $d_{1}^{+}, \ldots, d_{n}^{+}, d_{1}^{-}, \ldots, d_{m}^{-} \in \mathbb{N}$. Normal form R-matrix (with dimensions $\left.d^{+}, d^{-}\right)$is defined as

$$
N:=1_{d_{1}^{+}} \boxplus \ldots \boxplus 1_{d_{n}^{+}} \boxplus\left(-1_{d_{1}^{-}}\right) \boxplus \ldots \boxplus\left(-1_{d_{m}^{-}}\right) .
$$

Theorem

- Let $d:=d_{1}+\ldots+d_{n}$. Then χ_{N} has Thoma parameters

$$
\alpha_{i}=\frac{d_{i}^{+}}{d}, \quad \beta_{j}=\frac{d_{j}^{-}}{d} .
$$

- Yang-Baxter characters are in 1:1 correspondence with \mathbb{T}_{YB}.

$\mathcal{R}_{0} / \sim \cong \mathbb{Y} \times \mathbb{Y}$

It is convenient to rescale the Thoma parameters by the dimension:

$$
a_{i}:=d \alpha_{i}, \quad b_{i}:=d \beta_{i} .
$$

These are integers (= |eigenvalues of $p \operatorname{tr} R \mid$), and sum to d.

$\mathcal{R}_{0} / \sim \cong \mathbb{Y} \times \mathbb{Y}$

It is convenient to rescale the Thoma parameters by the dimension:

$$
a_{i}:=d \alpha_{i}, \quad b_{i}:=d \beta_{i} .
$$

These are integers ($=\mid$ eigenvalues of $p \operatorname{ptr} R \mid$), and sum to d.
Theorem
\mathcal{R}_{0} / \sim is in 1:1 correspondence with $\mathbb{Y} \times \mathbb{Y}$ via

$$
[R] \mapsto(a, b)
$$

- Example:

$$
(\square \square, \square): \quad d=8, \alpha=\left(\frac{3}{8}, \frac{1}{8}\right), \beta=\left(\frac{1}{4}, \frac{1}{4}\right) .
$$

Algebraic structure of \mathcal{R}_{0} / \sim :

- "sum \boxplus "

$$
\begin{aligned}
R & =(3+2,5+1+1), \quad S=(2,7+1) \\
R \boxplus S & =(3+2+2,7+5+1+1+1)
\end{aligned}
$$

Algebraic structure of \mathcal{R}_{0} / \sim :

- "sum \boxplus "

$$
\begin{aligned}
R & =(3+2,5+1+1), \quad S=(2,7+1) \\
R \boxplus S & =(3+2+2,7+5+1+1+1)
\end{aligned}
$$

- "product \otimes "

$$
\begin{aligned}
R & =(2+1,2), \quad S=(3+2,4) \\
R \otimes S & =((2+1)(3+2)+2 \cdot 4,(2+1) \cdot 4+2 \cdot(3+2))
\end{aligned}
$$

Algebraic structure of \mathcal{R}_{0} / \sim :

- "sum \boxplus "

$$
\begin{aligned}
R & =(3+2,5+1+1), \quad S=(2,7+1) \\
R \boxplus S & =(3+2+2,7+5+1+1+1)
\end{aligned}
$$

- "product \otimes "

$$
\begin{aligned}
R & =(2+1,2), \quad S=(3+2,4) \\
R \otimes S & =((2+1)(3+2)+2 \cdot 4,(2+1) \cdot 4+2 \cdot(3+2))
\end{aligned}
$$

- \mathcal{R}_{0} / \sim has structure of a "rig" (ring without negatives).

Describe the multiplicities of the irreps of S_{n} in $\rho_{R}^{(n)}$.

Describe the multiplicities of the irreps of S_{n} in $\rho_{R}^{(n)}$.

- $B(R):=(1+\#$ non-zero α 's $) \times\left(1+\#\right.$ non-zero $\left.\beta^{\prime} s\right)$
- For example: $B(R)=\square$ for $\alpha=0, \beta=\left(\frac{2}{3}, \frac{1}{3}\right)$

Describe the multiplicities of the irreps of S_{n} in $\rho_{R}^{(n)}$.

- $B(R):=(1+\#$ non-zero $\alpha ' s) \times\left(1+\#\right.$ non-zero $\left.\beta^{\prime} s\right)$
- For example: $B(R)=\boxminus$ for $\alpha=0, \beta=\left(\frac{2}{3}, \frac{1}{3}\right)$
- Multiplicity of diagram Y is zero iff $B(R) \subset Y$.

Describe the multiplicities of the irreps of S_{n} in $\rho_{R}^{(n)}$.

- $B(R):=(1+\#$ non-zero α 's $) \times\left(1+\#\right.$ non-zero $\left.\beta^{\prime} s\right)$
- For example: $B(R)=\boxminus$ for $\alpha=0, \beta=\left(\frac{2}{3}, \frac{1}{3}\right)$
- Multiplicity of diagram Y is zero jiff $B(R) \subset Y$.

Outlook

The following generalizations are on our agenda:

- Introduce a spectral parameter \longrightarrow QFT!
- Drop the assumption $R^{2}=1 \longrightarrow$ braid groups!

