Yang-Baxter Representations of the Infinite Symmetric Group

Gandalf Lechner

joint work with Ulrich Pennig and Simon Wood

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ $\sigma_i^2 = e$ $\sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| > 1$

2

 $R \in End(V \otimes V)$

$$1 2 3 4 5 6 7$$

$$V \otimes V \otimes \cdots$$

$$R_{1} = R \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \cdots$$

$$R_{2} = 1 \otimes R \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes \cdots$$

 $R \in End(V \otimes V)$

Yang-Baxter equation:

$$R_1 R_2 R_1 = R_2 R_1 R_2.$$

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary

 $R \in \operatorname{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

• $\mathcal{R}_0 := \text{set of all R-matrices (with any V)}$

Definition (for purpose of this talk)

V : finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \text{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

- $\mathcal{R}_0 := \text{set of all R-matrices (with any V)}$
- Any $R \in \mathcal{R}_0$ gives unitary rep. $\rho_R^{(n)}$ of S_n on $V^{\otimes n}$ via

$$\rho_R^{(n)}(\sigma_i) := R_i, \qquad i = 1, \dots, n-1$$

 $\rho_R : S_\infty \to \bigotimes_{n \ge 1} \text{End } V$

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

 $R \sim S$,

if for each *n*, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

 $R \sim S$,

if for each *n*, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Simple observations:

• $R \sim S \Longrightarrow \dim R = \dim S$, $\operatorname{Tr} R = \operatorname{Tr} S$.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

 $R \sim S$,

if for each *n*, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Simple observations:

- $R \sim S \Longrightarrow \dim R = \dim S$, $\operatorname{Tr} R = \operatorname{Tr} S$.
- For each $A \in GL(V)$,

 $R \sim (A \otimes A)R(A^{-1} \otimes A^{-1})$ $R \sim FRF$

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_0$, how to efficiently decide whether $R \sim S$?

Question 1

Find all R-matrices up to equivalence: Find a parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_0$, how to efficiently decide whether $R \sim S$?

Question 3 Which reps ρ of S_{∞} are of the form $\rho \cong \rho_R$ for some $R \in \mathcal{R}_0$? ("Yang-Baxter representations")

Yang-Baxter characters of S_∞

Normalized trace on tensor products ($d = \dim V$): $\operatorname{Tr}_{V} \subset \operatorname{Tr}_{V} \subset \operatorname{Tr}_{V}$

$$\tau = \frac{1}{d} \otimes \frac{1}{d} \otimes \frac{1}{d} \otimes \dots$$

For each R,

$$\chi_{\mathsf{R}}:= au\circ
ho_{\mathsf{R}}:\mathsf{S}_{\infty}\longrightarrow\mathbb{C}$$

is a (normalized) character of S_{∞} .

Yang-Baxter characters of ${\sf S}_\infty$

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \dots$$

For each R,

$$\chi_{\mathsf{R}} := \tau \circ
ho_{\mathsf{R}} : \mathsf{S}_{\infty} \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

• normalized character of $S_{\infty} =$ tracial state on C^*S_{∞}

Yang-Baxter characters of S_∞

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \dots$$

For each R,

$$\chi_{\mathsf{R}} := \tau \circ
ho_{\mathsf{R}} : \mathsf{S}_{\infty} \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

- normalized character of $S_\infty = \text{tracial state}$ on \textit{C}^*S_∞
- On *n*-cycle $c_n : i_1 \mapsto i_2 \mapsto \ldots \mapsto i_n \mapsto i_1$, get

$$\chi_R(c_n)=d^{-n} \operatorname{Tr}_{V^{\otimes n}}(R_1\cdots R_{n-1}).$$

Yang-Baxter characters of S_∞

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \frac{\mathrm{Tr}_{\mathrm{V}}}{d} \otimes \dots$$

For each R,

$$\chi_{\mathsf{R}} := \tau \circ \rho_{\mathsf{R}} : \mathsf{S}_{\infty} \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

- normalized character of $S_{\infty} =$ tracial state on C^*S_{∞}
- On *n*-cycle $c_n : i_1 \mapsto i_2 \mapsto \ldots \mapsto i_n \mapsto i_1$, get

$$\chi_R(c_n)=d^{-n} \operatorname{Tr}_{V^{\otimes n}}(R_1\cdots R_{n-1}).$$

• χ_{R} "factorizes": For $\sigma, \sigma' \in S_{\infty}$ with disjoint supports,

$$\chi_R(\sigma\sigma') = \chi_R(\sigma) \cdot \chi_R(\sigma').$$

Theorem [Thoma '64]

A character χ of S_∞ is extremal if and only if it factorizes.
 T := all real sequences {α_i}_i, {β_i}_i such that

- $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
- $\sum_{i} (\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1 : 1 correspondence with $\ensuremath{\mathbb{T}}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

Theorem [Thoma '64]

A character χ of S_∞ is extremal if and only if it factorizes.
 T := all real sequences {α_i}_i, {β_i}_i such that

- $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
- $\sum_{i}(\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1 : 1 correspondence with $\ensuremath{\mathbb{T}}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

• Each R defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$\sum_{i} \alpha_i^n + (-1)^{n+1} \sum_{i} \beta_i^n = d^{-n} \operatorname{Tr}_{V^{\otimes n}}(R_1 \cdots R_{n-1}).$$

Theorem [Thoma '64]

A character χ of S_∞ is extremal if and only if it factorizes.
 T := all real sequences {α_i}_i, {β_i}_i such that

- $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
- $\sum_{i}(\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1 : 1 correspondence with $\ensuremath{\mathbb{T}}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

• Each *R* defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$\sum_{i} \alpha_i^n + (-1)^{n+1} \sum_{i} \beta_i^n = d^{-n} \operatorname{Tr}_{V^{\otimes n}}(R_1 \cdots R_{n-1}).$$

• Which Thoma parameters are realized by Yang-Baxter characters?

- YB representations ρ_R are small: S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

- YB representations ρ_R are small: S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of C^*S_{∞} is faithful if and only if (1) or (2):

(1)
$$\sum_{i} (\alpha_{i} + \beta_{i}) < 1.$$

(2) Infinitely many Thoma parameters are non-zero.

- YB representations ρ_R are small: S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of C^*S_{∞} is faithful if and only if (1) or (2):

(1)
$$\sum_{i} (\alpha_{i} + \beta_{i}) < 1.$$

(2) Infinitely many Thoma parameters are non-zero.

• Thus: Thoma parameters (α, β) of a YB character satisfy $\sum_{i} (\alpha_i + \beta_i) = 1$, and only finitely many are non-zero.

Yang-Baxter subfactors

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \ge 1} \operatorname{End} V}^{\tau}$$
$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \ge 1}} \operatorname{End} V^{\tau}$$
$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).
Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \ge 1} \operatorname{End} V}^{\tau}$$
$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).

Subgroup

$$\mathsf{S}^>_\infty := \{\sigma \in \mathsf{S}_\infty \ : \ \sigma(\mathsf{1}) = \mathsf{1}\} \subset \mathsf{S}_\infty$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \ge 1} \operatorname{End} V}^{\tau}$$
$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).

Subgroup

$$\mathsf{S}^{>}_{\infty} := \{ \sigma \in \mathsf{S}_{\infty} \, : \, \sigma(\mathsf{1}) = \mathsf{1} \} \subset \mathsf{S}_{\infty}$$

generates another subfactor

$$\mathcal{N}_R := \rho_R(S^>_\infty)'' = \{R_i : i \ge 2\}'' \subset \mathcal{M}_R.$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \ge 1} \operatorname{End} V}^{\tau}$$
$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R = \pm 1$).

Subgroup

$$\mathsf{S}^>_\infty := \{\sigma \in \mathsf{S}_\infty \ : \ \sigma(\mathsf{1}) = \mathsf{1}\} \subset \mathsf{S}_\infty$$

generates another subfactor

$$\mathcal{N}_{R} := \rho_{R}(S_{\infty}^{>})'' = \{R_{i} : i \geq 2\}'' \subset \mathcal{M}_{R}.$$

• $\mathcal{N}'_R \cap \mathcal{M}_R = \mathbb{C}$ if and only if $R \in \{\pm 1, \pm F\}$ [Gohm-Köstler 2010, Yamashita 2012]

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}_R' \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

 $1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E}$

End V = End $V \otimes 1 \otimes 1 \dots \subset \mathcal{E}$.

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

 $1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E} \qquad \operatorname{End} V = \operatorname{End} V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}.$

In both cases, have τ -preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E = partial trace

 $E: \mathcal{E} \longrightarrow \text{End } V, \quad E = \text{id}_{\text{End } V} \otimes \tau \otimes \tau \otimes \dots$

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

 $1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E} \qquad \operatorname{End} V = \operatorname{End} V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}.$

In both cases, have τ -preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E = partial trace

 $E: \mathcal{E} \longrightarrow \text{End } V, \quad E = \text{id}_{\text{End } V} \otimes \tau \otimes \tau \otimes \dots$

• $\mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$: Cond. exp. E_R = limit of averaging over larger and larger subgroups of $S^>_{\infty}$.

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

 $1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E}$ $\operatorname{End} V = \operatorname{End} V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}.$

In both cases, have τ -preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E = partial trace

$$E: \mathcal{E} \longrightarrow \text{End } V, \quad E = \text{id}_{\text{End } V} \otimes \tau \otimes \tau \otimes \dots$$

• $\mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$: Cond. exp. E_R = limit of averaging over larger and larger subgroups of $S^>_{\infty}$.

$$\operatorname{End} V \xleftarrow{E} \mathcal{E}$$

$$\uparrow$$

$$\mathcal{N}'_{B} \cap \mathcal{M}_{B} \xleftarrow{E_{R}} \mathcal{M}_{B}$$

Proposition $E(R_1) = E_R(R_1).$

Proposition $E(R_1) = E_R(R_1).$

With arguments from [Gohm-Köstler 2010], one then gets

Theorem

Let $c_n \in S_\infty$ be an n-cycle, $n \ge 2$. Then

$$\chi_R(C_n) = \tau(E(R_1)^{n-1})$$

Proposition $E(R_1) = E_R(R_1).$

With arguments from [Gohm-Köstler 2010], one then gets

Theorem

Let $c_n \in S_\infty$ be an n-cycle, $n \ge 2$. Then

 $\chi_R(c_n) = \tau(E(R_1)^{n-1})$

Theorem: Characterization of \sim

Define the "usual partial trace" of R as

 $\operatorname{ptr} R := (\operatorname{id}_{\operatorname{End} V} \otimes \operatorname{Tr}_V)(R).$ $\Rightarrow \chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1}).$

 $R \sim S$ if and only if $ptrR \cong ptrS$.

$$\left(\begin{array}{cccc} a & b & a' & b' \\ c & d & c' & d' \\ a'' & b'' & a''' & b''' \\ c'' & d'' & c''' & d''' \end{array} \right)$$

$$\begin{pmatrix} a & b & a' & b' \\ c & d & c' & d' \\ \hline a'' & b'' & a''' & b''' \\ c'' & d'' & c''' & d''' \end{pmatrix}$$

$$\begin{pmatrix} a & b & a' & b' \\ c & d & c' & d' \\ \hline a'' & b'' & a''' & b''' \\ c'' & d'' & c''' & d''' \end{pmatrix} \longmapsto \begin{pmatrix} a + d & a' + d' \\ a'' + d'' & a''' + d''' \end{pmatrix}$$

$$\begin{pmatrix} a & b & a' & b' \\ c & d & c' & d' \\ \hline a'' & b'' & a''' & b''' \\ c'' & d'' & c''' & d''' \end{pmatrix} \longmapsto \begin{pmatrix} a+d & a'+d' \\ a''+d'' & a'''+d''' \end{pmatrix}$$

spectrum of partial trace of *R* determines equivalence class [*R*].

spectral characterizations also appear in [Okounkov 99]

Write

$$\chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1})$$

in Thoma parameters (α, β) of R and eigenvalues t_j of ptr R:

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \sum_{j} t_{j}^{n-1}$$

This implies:

Write

$$\chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1})$$

in Thoma parameters (α, β) of *R* and eigenvalues t_j of ptr *R*:

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \sum_{j} t_{j}^{n-1}$$

This implies:

Corollary

The Thoma parameters of a YB character are rational.

So far:

- (1) $R \sim S$ if and only if ptr $R \cong$ ptr S.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{\rm YB} \subset \mathbb{T},$ defined by:
 - Only finitely many α_i, β_i are non-zero
 - $\sum_i (\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

So far:

- (1) $R \sim S$ if and only if ptr $R \cong$ ptr S.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{\rm YB} \subset \mathbb{T},$ defined by:
 - Only finitely many α_i, β_i are non-zero
 - $\sum_i (\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

Now:

• Given $(\alpha, \beta) \in \mathbb{T}_{YB}$, construct *R* with these parameters.

So far:

- (1) $R \sim S$ if and only if ptr $R \cong$ ptr S.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{\rm YB} \subset \mathbb{T},$ defined by:
 - Only finitely many α_i, β_i are non-zero
 - $\sum_i (\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

Now:

- Given $(\alpha, \beta) \in \mathbb{T}_{YB}$, construct *R* with these parameters.
- Plan: Build R-matrix from simple blocks by "direct sum"

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

 $X \boxplus Y \in \mathsf{End}((V \oplus W) \otimes (V \oplus W))$

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

 $X \boxplus Y \in \mathsf{End}((V \oplus W) \otimes (V \oplus W))$

as

 $X \boxplus Y = X \oplus Y \oplus F \quad \text{on}$ $(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$ [Lyubashenko 87, Gurevich 91, Hietarinta 93]

Setting: V, W Hilbert spaces, $X \in End(V \otimes V)$, $Y \in End(W \otimes W)$. Define

 $X \boxplus Y \in \mathsf{End}((V \oplus W) \otimes (V \oplus W))$

as

 $X \boxplus Y = X \oplus Y \oplus F \quad \text{on}$ $(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

- \boxplus is commutative and associative.
- \boxplus preserves the YBE: $R, S \in \mathcal{R}_0 \Rightarrow R \boxplus S \in \mathcal{R}_0$.
- $ptr(R \boxplus S) = ptr R \oplus ptr S$.

Let $d_1^+, \ldots, d_n^+, d_1^-, \ldots, d_m^- \in \mathbb{N}$. Normal form R-matrix (with dimensions d^+, d^-) is defined as

$$N := \mathbf{1}_{d_1^+} \boxplus \ldots \boxplus \mathbf{1}_{d_n^+} \boxplus (-\mathbf{1}_{d_1^-}) \boxplus \ldots \boxplus (-\mathbf{1}_{d_m^-}).$$

Let $d_1^+, \ldots, d_n^+, d_1^-, \ldots, d_m^- \in \mathbb{N}$. Normal form R-matrix (with dimensions d^+, d^-) is defined as

$$N:=1_{d_1^+}\boxplus\ldots\boxplus 1_{d_n^+}\boxplus (-1_{d_1^-})\boxplus\ldots\boxplus (-1_{d_m^-}).$$

Theorem

• Let $d := d_1 + \ldots + d_n$. Then χ_N has Thoma parameters

$$\alpha_i = \frac{d_i^+}{d}, \qquad \beta_j = \frac{d_j^-}{d}.$$

• Yang-Baxter characters are in 1:1 correspondence with \mathbb{T}_{YB} .

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are **integers** (= |eigenvalues of ptr R|), and sum to d.

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are **integers** (= |eigenvalues of ptr R|), and sum to d.

Theorem

 $\mathcal{R}_0/{\sim}$ is in 1:1 correspondence with $\mathbb{Y}\times\mathbb{Y}$ via

 $[R]\mapsto (a,b)$

• Example:

$$(\square,\square): \quad d=8, \alpha = \left(\frac{3}{8}, \frac{1}{8}\right), \beta = \left(\frac{1}{4}, \frac{1}{4}\right).$$

Algebraic structure of \mathcal{R}_0/\sim :

● "sum ⊞"

$$R = (3 + 2, 5 + 1 + 1), \quad S = (2, 7 + 1)$$
$$R \boxplus S = (3 + 2 + 2, 7 + 5 + 1 + 1 + 1)$$

Algebraic structure of \mathcal{R}_0/\sim :

● "sum ⊞"

$$R = (3 + 2, 5 + 1 + 1), \quad S = (2, 7 + 1)$$
$$R \boxplus S = (3 + 2 + 2, 7 + 5 + 1 + 1 + 1)$$

• "product \otimes "

 $R = (2 + 1, 2), \quad S = (3 + 2, 4)$ $R \otimes S = ((2 + 1)(3 + 2) + 2 \cdot 4, (2 + 1) \cdot 4 + 2 \cdot (3 + 2))$ Algebraic structure of \mathcal{R}_0/\sim :

● "sum ⊞"

$$R = (3 + 2, 5 + 1 + 1), \quad S = (2, 7 + 1)$$
$$R \boxplus S = (3 + 2 + 2, 7 + 5 + 1 + 1 + 1)$$

• "product \otimes "

$$R = (2 + 1, 2), \quad S = (3 + 2, 4)$$

$$R \otimes S = ((2 + 1)(3 + 2) + 2 \cdot 4, (2 + 1) \cdot 4 + 2 \cdot (3 + 2))$$

• \mathcal{R}_0/\sim has structure of a "rig" (ring without negatives).

Describe the multiplicities of the irreps of S_n in $\rho_R^{(n)}$.

Describe the multiplicities of the irreps of S_n in $\rho_R^{(n)}$.

- B(R):= (1 + # non-zero α 's) × (1 + # non-zero β 's)
- For example: $B(R) = \Box$ for $\alpha = 0, \beta = (\frac{2}{3}, \frac{1}{3})$

Describe the multiplicities of the irreps of S_n in $\rho_R^{(n)}$.

- $B(R):= (1 + \# \text{ non-zero } \alpha's) \times (1 + \# \text{ non-zero } \beta's)$
- For example: $B(R) = \square$ for $\alpha = 0, \beta = (\frac{2}{3}, \frac{1}{3})$
- Multiplicity of diagram Y is zero iff $B(R) \subset Y$.
Describe the multiplicities of the irreps of S_n in $\rho_R^{(n)}$.

- $B(R):= (1 + \# \text{ non-zero } \alpha's) \times (1 + \# \text{ non-zero } \beta's)$
- For example: $B(R) = \Box$ for $\alpha = 0, \beta = (\frac{2}{3}, \frac{1}{3})$
- Multiplicity of diagram Y is zero iff $B(R) \subset Y$.

The following generalizations are on our agenda:

- Introduce a spectral parameter \longrightarrow QFT!
- Drop the assumption $R^2 = 1 \longrightarrow$ braid groups!