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The Yang-Baxter equation and the infinite symmetric group

Yang-Baxter equation:

R1R2R1 = R2R1R2. 2



The Yang-Baxter equation and the infinite symmetric group

Definition (for purpose of this talk)
V : finite-dim. Hilbert space. An R-matrix is a unitary
R ∈ End(V⊗ V) such that R1R2R1 = R2R1R2 and R2 = 1.

• R0 := set of all R-matrices (with any V)
• Any R ∈ R0 gives unitary rep. ρ(n)R of Sn on V⊗n via

ρ
(n)
R (σi) := Ri, i = 1, . . . ,n− 1

ρR :S∞ →
⊗
n≥1

End V
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Motivated from QFT constructions [Alazzawi-GL 2016]:
Definition
R, S ∈ R0 are called equivalent,

R ∼ S,

if for each n, the Sn-representations ρ(n)R
∼= ρ

(n)
S are

equivalent.

Simple observations:

• R ∼ S =⇒ dimR = dim S, TrR = Tr S.
• For each A ∈ GL(V),

R ∼ (A⊗ A)R(A−1 ⊗ A−1)
R ∼ FRF
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Question 1
Find all R-matrices up to equivalence: Find a
parameterization of R0/∼ and a representative in each
equivalence class.

Question 2
Given R, S ∈ R0, how to efficiently decide whether R ∼ S?

Question 3
Which reps ρ of S∞ are of the form ρ ∼= ρR for some R ∈ R0?
(“Yang-Baxter representations”)
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Yang-Baxter characters of S∞

Normalized trace on tensor products (d = dim V):

τ =
TrV
d ⊗ TrV

d ⊗ TrV
d ⊗ . . .

For each R,

χR := τ ◦ ρR : S∞ −→ C

is a (normalized) character of S∞.

• normalized character of S∞ = tracial state on C∗S∞
• On n-cycle cn : i1 7→ i2 7→ . . . 7→ in 7→ i1, get

χR(cn) = d−n TrV⊗n(R1 · · ·Rn−1).

• χR “factorizes”: For σ, σ′ ∈ S∞ with disjoint supports,

χR(σσ
′) = χR(σ) · χR(σ′) .

6



Yang-Baxter characters of S∞

Normalized trace on tensor products (d = dim V):

τ =
TrV
d ⊗ TrV

d ⊗ TrV
d ⊗ . . .

For each R,

χR := τ ◦ ρR : S∞ −→ C

is a (normalized) character of S∞.

• normalized character of S∞ = tracial state on C∗S∞

• On n-cycle cn : i1 7→ i2 7→ . . . 7→ in 7→ i1, get

χR(cn) = d−n TrV⊗n(R1 · · ·Rn−1).

• χR “factorizes”: For σ, σ′ ∈ S∞ with disjoint supports,

χR(σσ
′) = χR(σ) · χR(σ′) .

6



Yang-Baxter characters of S∞

Normalized trace on tensor products (d = dim V):

τ =
TrV
d ⊗ TrV

d ⊗ TrV
d ⊗ . . .

For each R,

χR := τ ◦ ρR : S∞ −→ C

is a (normalized) character of S∞.

• normalized character of S∞ = tracial state on C∗S∞
• On n-cycle cn : i1 7→ i2 7→ . . . 7→ in 7→ i1, get

χR(cn) = d−n TrV⊗n(R1 · · ·Rn−1).

• χR “factorizes”: For σ, σ′ ∈ S∞ with disjoint supports,

χR(σσ
′) = χR(σ) · χR(σ′) .

6



Yang-Baxter characters of S∞

Normalized trace on tensor products (d = dim V):

τ =
TrV
d ⊗ TrV

d ⊗ TrV
d ⊗ . . .

For each R,

χR := τ ◦ ρR : S∞ −→ C

is a (normalized) character of S∞.

• normalized character of S∞ = tracial state on C∗S∞
• On n-cycle cn : i1 7→ i2 7→ . . . 7→ in 7→ i1, get

χR(cn) = d−n TrV⊗n(R1 · · ·Rn−1).

• χR “factorizes”: For σ, σ′ ∈ S∞ with disjoint supports,

χR(σσ
′) = χR(σ) · χR(σ′) . 6



Theorem [Thoma ’64]

(1) A character χ of S∞ is extremal if and only if it factorizes.
(2) T := all real sequences {αi}i, {βi}i such that

• αi ≥ αi+1 ≥ 0, βi ≥ βi+1 ≥ 0
•
∑

i(αi + βi) ≤ 1

Extremal characters are in 1 : 1 correspondence with T via

χ(cn) =
∑
i
αni + (−1)n+1

∑
i
βni , n ≥ 2.

• Each R defines a point (α, β) ∈ T via∑
i
αni + (−1)n+1

∑
i
βni = d−n TrV⊗n(R1 · · ·Rn−1).

• Which Thoma parameters are realized by Yang-Baxter
characters?
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• YB representations ρR are small: Sn-rep ρ
(n)
R has only

dimension dn.
• Consequence: ρR is not faithful as a representation of the
group algebra.

Theorem [Wassermann ’81]
An extremal trace of C∗S∞ is faithful if and only if (1) or (2):

(1)
∑

i(αi + βi) < 1.
(2) Infinitely many Thoma parameters are non-zero.

• Thus: Thoma parameters (α, β) of a YB character satisfy∑
i(αi + βi) = 1, and only finitely many are non-zero.
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Yang-Baxter subfactors

Notation:

E :=
⊗
n≥1

End V
τ

MR := ρR(S∞)′′ = {Ri : i ∈ N}′′ ⊂ E

• As χR is extremal,MR is a factor (II1 unless R = ±1).

Subgroup

S>∞ := {σ ∈ S∞ : σ(1) = 1} ⊂ S∞
generates another subfactor

NR := ρR(S>∞)′′ = {Ri : i ≥ 2}′′ ⊂ MR .

• N ′
R ∩MR = C if and only if R ∈ {±1,±F}

[Gohm-Köstler 2010, Yamashita 2012]
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Compare the subfactors

NR ⊂ MR, N ′
R ∩MR ⊂ MR

to tensor product subfactors

1⊗ End V⊗ End V⊗ . . . ⊂ E End V = End V⊗ 1⊗ 1 . . . ⊂ E .

In both cases, have τ-preserving conditional expectations:

• End V ⊂ E : Cond. exp. E = partial trace

E : E −→ End V, E = idEnd V⊗τ ⊗ τ ⊗ . . .

• N ′
R ∩MR ⊂ MR: Cond. exp. ER= limit of averaging over

larger and larger subgroups of S>∞.
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Proposition
E(R1) = ER(R1).

With arguments from [Gohm-Köstler 2010], one then gets
Theorem
Let cn ∈ S∞ be an n-cycle, n ≥ 2. Then

χR(cn) = τ(E(R1)n−1)

Theorem: Characterization of ∼
Define the “usual partial trace” of R as

ptrR := (idEnd V⊗ TrV)(R).
⇒ χR(cn) = d−n TrV(ptr(R)n−1) .

R ∼ S if and only if ptrR ∼= ptrS.
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partial trace in d = 2:
a b a′ b′

c d c′ d′

a′′ b′′ a′′′ b′′′

c′′ d′′ c′′′ d′′′
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partial trace in d = 2:
a b a′ b′

c d c′ d′

a′′ b′′ a′′′ b′′′

c′′ d′′ c′′′ d′′′

 7−→

(
a+ d a′ + d′

a′′ + d′′ a′′′ + d′′′

)
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c′′ d′′ c′′′ d′′′

 7−→

(
a+ d a′ + d′
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)

spectrum of partial trace of R determines equivalence class [R].

spectral characterizations also appear in [Okounkov 99]
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Write
χR(cn) = d−n TrV(ptr(R)n−1)

in Thoma parameters (α, β) of R and eigenvalues tj of ptrR:∑
i
αni + (−1)n+1

∑
i
βni = d−n

∑
j
tn−1j .

This implies:

Corollary
The Thoma parameters of a YB character are rational.
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Normal form R-matrices

So far:

(1) R ∼ S if and only if ptrR ∼= ptr S.
(2) Thoma parameters of YB characters lie in TYB ⊂ T,

defined by:
• Only finitely many αi, βi are non-zero
•
∑

i(αi + βi) = 1
• αi, βi ∈ Q

Now:

• Given (α, β) ∈ TYB, construct R with these parameters.
• Plan: Build R-matrix from simple blocks by “direct sum”
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Setting: V,W Hilbert spaces, X ∈ End(V⊗ V), Y ∈ End(W⊗W).
Define

X⊞Y ∈ End((V⊕W)⊗ (V⊕W))

as

X⊞ Y = X⊕ Y⊕ F on
(V⊕W)⊗ (V⊕W) = (V⊗ V)⊕ (W⊗W)⊕ ((V⊗W)⊕ (W⊗ V)).

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

• ⊞ is commutative and associative.
• ⊞ preserves the YBE: R, S ∈ R0 ⇒ R⊞ S ∈ R0.
• ptr(R⊞ S) = ptrR⊕ ptr S.

16
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Let d+1 , . . . ,d
+
n ,d−1 , . . . ,d

−
m ∈ N. Normal form R-matrix (with

dimensions d+,d−) is defined as

N := 1d+1 ⊞ . . .⊞ 1d+n ⊞ (−1d−1 )⊞ . . .⊞ (−1d−m ).

Theorem

• Let d := d1 + . . .+ dn. Then χN has Thoma parameters

αi =
d+i
d , βj =

d−j
d .

• Yang-Baxter characters are in 1:1 correspondence with TYB.

17
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Theorem

• Let d := d1 + . . .+ dn. Then χN has Thoma parameters

αi =
d+i
d , βj =

d−j
d .

• Yang-Baxter characters are in 1:1 correspondence with TYB.
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R0/∼ ∼= Y× Y

It is convenient to rescale the Thoma parameters by the
dimension:

ai := dαi, bi := dβi .

These are integers (= |eigenvalues of ptrR|), and sum to d.

Theorem
R0/∼ is in 1:1 correspondence with Y× Y via

[R] 7→ (a,b)

• Example:(
,

)
: d = 8, α =

(
3
8 ,
1
8

)
, β =

(
1
4 ,
1
4

)
.
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Algebraic structure of R0/∼:

• “sum ⊞”

R = (3+ 2, 5+ 1+ 1), S = (2, 7+ 1)
R⊞ S = (3+ 2+ 2, 7+ 5+ 1+ 1+ 1)

• “product ⊗”

R = (2+ 1, 2), S = (3+ 2, 4)
R⊗ S = ((2+ 1)(3+ 2) + 2 · 4, (2+ 1) · 4+ 2 · (3+ 2))

• R0/∼ has structure of a “rig” (ring without negatives).
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Describe the multiplicities of the irreps of Sn in ρ
(n)
R .
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Outlook

The following generalizations are on our agenda:

• Introduce a spectral parameter −→ QFT!
• Drop the assumption R2 = 1 −→ braid groups!
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