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Outline of the talk

1) (Algebraic) QFT and the construction of models

2) Borchers triples and Borchers’ theorem

3) Several examples of Borchers triples and concrete
construction procedures
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Construction of QFTs by quantization

» Traditional construction of QFTs: Start from a classical
Lagrangian field theory, obtain the QFT by quantization and
perturbative renormalization

› Most successful in low dimensions (d = 1 + 1 or d = 1 + 2),
where complete constructions have been achieved and
perturbation expansion could be ‘‘tamed’’
[Glimm/Jaffe, and many more, since late 1960s]

› State of the art in d = 1 + 3: Rigorous construction of many
interacting theories in a formal power series setting
[talk by Kopper, Brunetti/Dütsch/Fredenhagen, ...]

Here:

› Discussion of alternative, operator-algebraic construction
procedures

› Long term aim: Better understand the quantum structure of
local interactions
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Algebraic description of QFT on Minkowski space

Setting
› Hilbert spaceH (physical states given by vectors and density
matrices inH)

› Unitary representation (x ,Λ) 7→ U(x ,Λ) of the Poincaré group
onH (relativistic symmetry)

› Require generator of time translations to have positive
spectrum in each Lorentz frame (Spectrum condition, vacuum)

› Vacuum vector Ω ∈ H, invariant under U
› For each region O ⊂ Rd in Minkowski spaceRd , a von
Neumann algebraA(O) ⊂ B(H) of observables measurable in
O (can, but need not be generated by quantum fields)

› The observable net O 7→ A(O has to satisfy some physical
requirements (in particular, Poincaré covariance and Einstein
locality)
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Algebraic description of QFT on Minkowski space

» For computing physically interesting quantities such as for
example cross sections, these data are sufficient [Haag]

-- no quantum or classical fields necessary

» For general analysis, the ‘‘more invariant’’ algebraic point of
view has proven advantageous (e.g. Borchers classes)

Main open problem:
(H,U,Ω,O 7→ A(O)) is a very complex structure
... rigorous construction of examples is a challenge.
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A seminal paper of Borchers
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Wedges

Certain special regions in Minkowski space (wedges) play a
distinguished role here.

W0 := {x ∈ Rd : x1 > |x0} ‘‘standard wedge’’
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Borchers triples

Definition
A Borchers triple (M,U,Ω) consists of

» A von Neumann algebraM⊂ B(H) on some Hilbert spaceH,
» A strongly continuous unitary representation of the

translationsRd onH,
› with spectrum condition,
› such that U(x)MU(x)−1 ⊂M for x ∈W0,

» A unit vector Ω ∈ H which is invariant under U and cyclic and
separating forM.

› Name ‘‘Borchers triple’’ introduced by Buchholz [2010]

› Structure of Borchers triples much easier than that of
full-fledged QFTs (single algebraM instead of infinite
collection {A(O}O )
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‘‘Borchers’ Theorem’’

Theorem [Borchers 1992]

Let (M,U,Ω) be a Borchers triple and consider the modular
group ∆it and modular conjugation J of the pair (M,Ω). Then

∆itU(x)∆−it = U(Λ1(t)x),

JU(x)J = U(j1x),

where Λ1(t) is the Lorentz boost in x1-direction with rapidity
−2πt, and j1 the reflection at the edge ofW0.

› Generalizes an essential part of the Bisognano-Wichmann theorem
to algebraic QFT

› Can be used, with further assumptions, to prove modular
covariance, spin-statistics, CPT theorems [in particular Mund 2001]

› Focus here: Use of Borchers triples / Borchers’ theorem in
constructive approaches.
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About the proof

› Borchers found his original proof using analytic functions in
several complex variables, one of his areas of expertise and
favorite tools

[Borchers, Ann. Poincare Phys. Theor. 63, 1995, 331-382]

› Later a simpler alternative proof was found by Florig [Florig 1998]
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From Borchers triples to local nets

In d = 1 + 1 dimensions, a Borchers triple (M,U,Ω) gives rise to
an associated local netA (QFT model):

› A(W0) :=M
› A(W0 + x) := U(x)MU(x)−1

› A(−W0 + x) := U(x)M′U(x)−1

› A((W0 + x)∩ (−W0 + y)) := (U(x)MU(x)−1)∩ (U(y)M′U(y)−1)

� By Borchers’ theorem, the so defined net O 7→ A(O)
transforms covariantly under a representation of the Poincaré
group built from U and the modular data of (M,Ω).

� Moreover,A satisfies Einstein locality.
� Non-triviality of the intersectionsA((W0 + x) ∩ (−W0 + y)) is
however not automatic here− additional work necessary
[Doplicher/Longo 1984, Buchholz/D’Antoni/Longo 1990→ Buchholz/GL 2004].
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Borchers triples in higher dimensions

In d > 1 + 1 dimensions, the geometric structure of the family of
wedges is different - need adapted definition of Borchers triple
[Baumgärtel/Wollenberg 1992, Buchholz/Summers 2008]

Definition
A causal Borchers triple (M,U,Ω) consists of

» A von Neumann algebraM⊂ B(H) on some Hilbert spaceH,
» A strongly continuous unitary representation of the Poincaré

group onH,
› with spectrum condition,
› such that U(x ,Λ)MU(x ,Λ)−1 ⊂Mwhenever ΛW0 + x ⊂W0,
› such that U(x ,Λ)MU(x ,Λ)−1 ⊂M′ whenever ΛW0 + x ⊂ −W0,

» A unit vector Ω ∈ H which is invariant under U and cyclic and
separating forM.

� Constructions of nets from a causal Borchers triple works
analogously to the two-dim. case.
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Constructive algebraic QFT

Possible construction strategy for QFT models:

1. Construct a Borchers triple based on physical input

2. Analyze the local observable content of the associated net

› Borchers triples more manageable than full QFTs

› Many examples exist

› First general structure results [Longo/Witten 2010]

› Efficient tools for analyzing local observable content
currently restricted to d = 1 + 1

» Rest of the talk: Examples of Borchers triples and associated
QFT models (1.)
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A purely quantum construction of free theories

[Schroer 1997], [Brunetti/Guido/Longo 2002]

» Input: Hilbert spaceH1 with unitary positive energy
representation U1 of the proper Poincaré group.
(�xes particle content)

› Boosts in x1-direction: Λ1(t), reflection j1 at edge ofWR .

» Define

∆it := U1(0,−2πt) , J := U1(j1) , S := J∆1/2 .

» S is densely defined, closable, antilinear involution

» Consider real subspace

K := {ψ ∈ dom S : Sψ = ψ} ⊂ H1

‘‘one-particle vectors localized inW0’’
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A purely quantum construction of free theories

The pair (K,U1) is a single particle version of a Borchers triple:

› U1(x ,Λ)K ⊂ K whenever ΛW0 + x ⊂W0.

› U1(x ,Λ)K ⊂ K′ (sympl. compl.) whenever ΛW0 + x ⊂ −W0.

› K is ‘‘standard’’, i.e. K + iK = H1 and K ∩ iK = {0}.

Theorem [Brunetti/Guido/Longo 2002]

LetH = Γ(H1) denote the Fock space overH1, with Fock vac. Ω,
second quantized representation Γ(U1), and

M0 := {V (ψ) : ψ ∈ K}′′ (V (ψ) Weyl operator) .

Then

› (M0, Γ(U1),Ω) is a Borchers triple onH.
› In the associated netA, the vacuum is cyclic forA(C ) for each
spacelike cone C .
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» This procedure yields any free field theory by a purely
quantum construction.

› For interacting theories, some additional input is necessary.

U1

single particle
spectrum

⇒
K ⊂ H1

one-particle local.
structure

⇒
(M0, Γ(U1),Ω)

‘‘free’’ Borchers triple,
free QFT

⇓
(M,U,Ω)

‘‘interacting’’ Borchers
triple and QFT

› Study deformations of Borchers triples,
in general or in particular for (M0, Γ(U1),Ω)
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A general deformation procedure

[Buchholz/GL/Summers 2011]

Input:

› A Borchers triple (M,U,Ω) in any dimension d ≥ 1 + 1

› A skew-symmetric real (d × d)-matrix Q as deformation
parameter

Definition:
The warped convolution of a (smooth) operator A ∈ B(H) is

AQ := (2π)−d
∫∫

dp dx e−ipx U(Qp, 1)AU(Qp, 1)−1U(x , 1)

› AQ can be defined in an oscillatory sense on smooth vectors

› Idea for this deformation comes from QFT on noncommutative
spacetimes [Grosse/GL 2007], transferred to operator-algebraic setting
[Buchholz/Summers 2008]
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A general deformation procedure

Properties of the deformation A 7→ AQ :

› A0 = A

› A 7→ AQ is linear

› AQ
∗ = A∗Q

› AQBQ = (A×Q B)Q with

A×Q B = (2π)−d
∫

dp dx e−ipx U(Qp)AU(Qp)−1U(x)BU(x)−1

Rieffel product [Rieffel 1992]

› AQΩ = AΩ

› U(x ,Λ)AQU(x ,Λ)−1 =
(
U(x ,Λ)AU(x ,Λ)−1

)
ΛQΛ−1
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A general deformation procedure

› Observation 1:The matrix Q can be chosen in such a way that

ΛQΛ−1 = Q ⇔ ΛW0 = W0,

ΛQΛ−1 = −Q ⇔ ΛW0 = −W0 .

[Grosse/Lechner 2007]

› Observation 2: If QV+ ⊂W0, by exploiting the spectrum
condition one can show

[AQ ,B
′
−Q ] = 0 for A ∈M, B ′ ∈M′ .

[Buchholz/Summers 2008]
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A general deformation procedure

Theorem [Buchholz/GL/Summers 2011]

Let (M,U,Ω) be a Borchers triple, and Q appropriately chosen.
Then, with

MQ := {AQ : A ∈M smooth}′′ ,

also (MQ ,U,Ω) is a Borchers triple.

› Warped convolution produces new (non-equivalent) examples of
Borchers triples from known ones.

› Effect of deformation on scattering states: Two-particle S-matrix
changes (picks up an energy-dependent phase)

› Effect of deformation on thermodynamics: Under investigation
[work in progress with Schlemmer]

› Drawback of this construction: In d > 1 + 1, the net associated with
the deformed triple probably has no strictly local observables
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A deformation of the massive free Borchers triple

Now another example of a deformation, but making use of the
more particular ‘‘second quantized’’ structure of (M0, Γ(U1),Ω).

Definition
› A symmetric inner function [Longo/Witten 2010, Longo/Rehren 2011] is a
bounded analytic function ϕ on the upper half plane such that
ϕ(t) = ϕ(t)−1 = ϕ(−t) for t ∈ R.

› A root of a symmetric inner function is a function R ∈ L∞(R)
such that R(t) = R(t)−1 = R(−t) and R2 is symmetric inner.

› Properties of R closely related to S-matrix properties (unitarity,
crossing symmetry..)

› Analyticity of R2 necessary for locality (moving wedge localization in
commutators apart, half-sided Fourier transform)
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A deformation of the massive free Borchers triple

Choose a root R , a matrix Q as before, and define on Fock space
Γ(H1) overH1 = L2(Rd−1, dµm(p)) the operators

[TR(q)Ψ]n(p1...pn) :=
n∏

k=1

R(qQpk) ·Ψn(p1...pn).

Deform free field operators φ(ψ) = a†(ψ) + a(ψ) according to

φR(ψ) := a†R(ψ) + aR(ψ) ,

aR(p) := a(p)TR(p) , aR(ψ) =

∫
dµm(p) aR(p)ψ(p)

and similarly for field polynomials (Borchers-Uhlmann algebra)

Gandalf Lechner (Uni Leipzig) Borchers triples Borchers Symposium 23 / 28



A deformation of the massive free Borchers triple

Theorem [GL 2011], generalizations by [Alazzawi 2012]

Let R be a root. With

MR := {e iφR(ψ) : ψ ∈ K}′′ ,

(MR , Γ(U1),Ω) is a Borchers triple.

› Two-particle S-matrix essentially given by R2.

› Structural properties of the associated net similar to warping case.

› In d = 1 + 1, further properties known for a large family of R ’s:
Existence of local observables, asymptotic completeness, solution
of inverse scattering problem for factorizing S-matrices, scaling
limits, expansions of local operators ...
[Schroer 1997, Borchers/Buchholz/Schroer 2000, GL 03, Buchholz/GL 04, GL 06,

Bostelmann/GL/Morsella 2011, GL/Schützenhofer 2012, Bostelmann/Cadamuro

2012,...]

› Conjecture: Any integrable QFT can be obtained like this.
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The chiral situation

» In the massless, two-dimensional situation, special chiral
examples exist (decomposition in left- and right-movers).
For a Borchers triple (M,U,Ω), this means

› H ∼= H+ ⊗H−
› M∼=M+ ⊗M−
› U(x) ∼= U+(x−)⊗ U−(x+),
x± := x0 ± x1

› Ω ∼= Ω+ ⊗ Ω−
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Deformations of chiral Borchers triples

Theorem [Tanimoto 2011]

Let ϕ be a symmetric inner function,
(M+ ⊗M−,U+ ⊗ U−,Ω+ ⊗ Ω−) the chiral Borchers triple of the
free massless field in two dimensions, and

[SϕΨ]n,m(p1...pn; q1...qm) :=
∏

i=1...n
j=1...m

ϕ0(pi , qj) ·Ψn,m(p1...pn; q1...qm).

Then

((M+ ⊗ 1) ∨ Sϕ(1⊗M−)S∗ϕ,U+ ⊗ U−,Ω+ ⊗ Ω−)

is a Borchers triple, with wave-S-matrix Sϕ
[Buchholz 1975, Dybalski/Tanimoto 2010].

› Uses Longo-Witten endomorphisms [Longo/Witten 2010].
› Further constructions by [Dybalski/Tanimoto 10, Bischoff/Tanimoto 11/12].
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Equivalence of two deformations

In the massless, two-dimensional situation, both the
deformation in terms of inner functions [Tanimoto 2011] as well as
the one in terms of roots [GL 2011] are applicable.

Theorem [GL/Schlemmer/Tanimoto 2012]− arXiv:1209.2547

Let ϕ be a symmetric inner function and R a root. Then the
Borchers triples (MR ,U,Ω) and
((M+ ⊗ 1) ∨ Sϕ(1⊗M−)S∗ϕ,U+ ⊗ U−,Ω+ ⊗ Ω−), obtained as
deformations of the free massless chiral triple, are unitarily
equivalent.

› Other mass zero deformations also possible, related to scaling
limits [Bostelmann/GL/Morsella 2011].

› Different choices of fields (different roots) lead to equivalent nets.

› Does there exist a unique Borchers triple for each ‘‘admissible’’
S-matrix?
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Conclusions

› Borchers triples can be viewed as building blocks of QFTs

› A possible strategy for algebraic constructions of models proceeds
via deformations of Borchers triples

› One example (warping) of such a deformation and a growing
number of particular examples of Borchers triples known

› General deformation/structure theory wanted

» Borchers continues to inspire mathematical work in QFT, and lives
on through his seminal contributions to the subject.
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