Thermal Equilibrium States for QFTs on Moyal Minkowski Spacetime

Gandalf Lechner

joint work with Albert Huber and Jan Schlemmer

UNIVERSITÄT LEIPZIG

ICMP 2012

» QFTs on a "noncommutative \mathbb{R}^4 " can be obtained by deforming QFTs on usual \mathbb{R}^4 :

- » QFTs on a "noncommutative ℝ⁴" can be obtained by deforming QFTs on usual ℝ⁴:
- A: observable algebra with action of Poincaré group
 ω: translationally invariant state on A, GNS rep πω, Uω

$$\pi_{\omega}(A) \mapsto \pi_{\omega}(A)_{\theta} = (2\pi)^{-4} \int dp \, dx \, e^{ipx} \, U_{\omega}(\theta p) \pi_{\omega}(A) U_{\omega}(\theta p)^{-1} U_{\omega}(x)$$

[Grosse/L 07, Buchholz/Summers 08, Buchholz/L/Summers 11,...]

- » QFTs on a "noncommutative ℝ⁴" can be obtained by deforming QFTs on usual ℝ⁴:
- A: observable algebra with action of Poincaré group
 ω: translationally invariant state on A, GNS rep πω, Uω

$$\pi_{\omega}(A) \mapsto \pi_{\omega}(A)_{\theta} = (2\pi)^{-4} \int dp \, dx \, e^{ipx} \, U_{\omega}(\theta p) \pi_{\omega}(A) U_{\omega}(\theta p)^{-1} U_{\omega}(x)$$

[Grosse/L 07, Buchholz/Summers 08, Buchholz/L/Summers 11,...]

» For Lorentz-covariant theories, need full Lorentz orbit $Θ = {Λθ_0Λ^{-1} : Λ ∈ L}$ of θ's:

$$U_{\omega}(x,\Lambda)\pi_{\omega}(A)_{\theta}U_{\omega}(x,\Lambda)^{-1} = (U_{\omega}(x,\Lambda)\pi_{\omega}(A)U_{\omega}(x,\Lambda)^{-1})_{\Lambda\theta\Lambda^{-1}}$$

▶ Observable algebra \mathcal{A}_{Θ} generated by all $\pi_{\omega}(A)_{ heta}$, $A \in \mathcal{A}$, $\theta \in \Theta$

- > When deforming vacuum rep, deformed theory has interesting locality properties ("wedge locality" → talk by Grosse)
- > This localization makes it possible to do scattering theory
- > ... but relies essentially on the spectrum condition sp $U_\omega \subset \overline{V_+}$ [Buchholz/Summers 08]

- ➤ When deforming vacuum rep, deformed theory has interesting locality properties ("wedge locality" → talk by Grosse)
- > This localization makes it possible to do scattering theory
- > ... but relies essentially on the spectrum condition sp $U_\omega \subset \overline{V_+}$ [Buchholz/Summers 08]
- > Fails when deforming a thermal rep, sp $U_\omega = {
 m I\!R}^4$ [Morfa-Morales 10]

- ➤ When deforming vacuum rep, deformed theory has interesting locality properties ("wedge locality" → talk by Grosse)
- > This localization makes it possible to do scattering theory
- > ... but relies essentially on the spectrum condition sp $U_\omega \subset \overline{V_+}$ [Buchholz/Summers 08]
- > Fails when deforming a thermal rep, sp $U_\omega = {
 m I\!R}^4$ [Morfa-Morales 10]

Questions:

- What are the thermal equilibrium states (KMS) of a field theory deformed in the vacuum representation, if any?
 Dynamics: time translation U_ω(t). Inverse temperature β > 0 fixed.
- Deformation procedures producing wedge-local field theories without using spectrum condition?
- > Thermal properties of QFTs on noncommutative spaces?

KMS states for NC QFT

KMS states for Rieffel-deformed algebras

- > Consider QFT in vacuum state ω (notation $A = \pi_{\omega}(A)$, $U = U_{\omega}$)
- ▶ $\mathcal{A}_{\Theta} \supset \mathcal{A}_{\{\theta\}} := \{A_{\theta} : A \in \mathcal{A}\} \cong (\mathcal{A}, \times_{\theta})$ with Rieffel product \times_{θ} [Rieffel 92]

$$A_{\theta}B_{\theta} = (A imes_{\theta} B)_{\theta}$$

KMS states for Rieffel-deformed algebras

- > Consider QFT in vacuum state ω (notation $A = \pi_{\omega}(A)$, $U = U_{\omega}$)
- ▶ $\mathcal{A}_{\Theta} \supset \mathcal{A}_{\{\theta\}} := \{A_{\theta} : A \in \mathcal{A}\} \cong (\mathcal{A}, \times_{\theta})$ with Rieffel product \times_{θ} [Rieffel 92]

$$A_{\theta}B_{\theta} = (A \times_{\theta} B)_{\theta}$$

> For any translationally invariant functional φ , there holds

$$\varphi(A \times_{\theta} B) = \varphi(AB)$$

 $\Rightarrow arphi(A^* imes_{ heta} A) = arphi(A^*A) \geq 0$ for states on $\mathcal A$

KMS states for Rieffel-deformed algebras

- > Consider QFT in vacuum state ω (notation $A = \pi_{\omega}(A)$, $U = U_{\omega}$)
- ▶ $\mathcal{A}_{\Theta} \supset \mathcal{A}_{\{\theta\}} := \{A_{\theta} : A \in \mathcal{A}\} \cong (\mathcal{A}, \times_{\theta})$ with Rieffel product \times_{θ} [Rieffel 92]

$$A_{\theta}B_{\theta} = (A imes_{\theta} B)_{\theta}$$

> For any translationally invariant functional φ , there holds

$$\varphi(A \times_{\theta} B) = \varphi(AB)$$

 $\Rightarrow arphi(A^* imes_{ heta} A) = arphi(A^*A) \geq 0$ for states on $\mathcal A$

Theorem

The translationally invariant KMS states at fixed temperature on \mathcal{A} and $\mathcal{A}_{\{\theta\}}$ are in 1 : 1 correspondence via $\omega_{\beta}^{\theta}(\mathcal{A}_{\theta}) := \omega_{\beta}(\mathcal{A})$.

Gandalf Lechner (Uni Leipzig)

Although such models at fixed $\theta \in \Theta$ are quite popular, they are

- > not Lorentz covariant
- > not (wedge-) local

Need to consider the bigger observable algebra $\mathcal{A}_\Theta \supset \mathcal{A}_{\{\theta\}}$

Although such models at fixed $\theta \in \Theta$ are quite popular, they are

- > not Lorentz covariant
- > not (wedge-) local

Need to consider the bigger observable algebra $\mathcal{A}_\Theta \supset \mathcal{A}_{\{\theta\}}$

• No explicit description of its elements $A_{\theta}B_{\theta'} = \dots$

Although such models at fixed $\theta \in \Theta$ are quite popular, they are

- > not Lorentz covariant
- > not (wedge-) local

Need to consider the bigger observable algebra $\mathcal{A}_\Theta \supset \mathcal{A}_{\{\theta\}}$

- No explicit description of its elements $A_{\theta}B_{\theta'} = \dots$
- » Study the situation in a concrete model: free massive scalar field in vacuum rep.

$$\mathcal{A} = \mathsf{polynomials}(\phi(f)), \ f \in \mathscr{S}(\mathbb{R}^4)$$
$$[\phi(f), \phi(g)] = \int dp \ dq \ \tilde{f}(-p)\tilde{g}(-q) \ \tilde{C}(p,q) \cdot 1$$

• Formally:

$$ilde{\phi}_{ heta}(p) ilde{\phi}_{ heta'}(p') - e^{ip\cdot(heta+ heta')p'} ilde{\phi}_{ heta'}(p') ilde{\phi}_{ heta}(p) = ilde{C}(p,p') m{U}((m{ heta'}-m{ heta})p)$$

- → Certain functions of the vacuum translations U(x) lie in \mathcal{A}_{Θ}
- KMS condition gives no information about $\omega_{\beta}(U(x))$

- → Certain functions of the vacuum translations U(x) lie in \mathcal{A}_{Θ}
- KMS condition gives no information about $\omega_{\beta}(U(x))$

Form of KMS functionals

The set of all KMS functionals ω_{β}^{Θ} on \mathcal{A}_{Θ} is precisely the family of functionals given by the *n*-point distributions

$$\begin{split} \omega_{\beta}^{\Theta}(\tilde{\phi}_{\theta_{1}}(p_{1})\cdots\tilde{\phi}_{\theta_{2n+1}}(p_{2n+1})) &= 0 ,\\ \omega_{\beta}^{\Theta}(\tilde{\phi}_{\theta_{1}}(p_{1})\cdots\tilde{\phi}_{\theta_{2n}}(p_{2n})) &= \\ w(-\sum_{j=1}^{2n}\theta_{j}p_{j})\prod_{1\leq l< r\leq n}e^{ip_{l}\cdot\theta_{l}p_{r}}\sum_{(\boldsymbol{I},\boldsymbol{r})\in\mathcal{C}_{2n}}\prod_{k=1}^{n}\frac{\tilde{C}(p_{l_{k}},p_{r_{k}})}{1-e^{\beta p_{l_{k}}^{0}+ip_{l_{k}}\cdot\sum_{b=1}^{2n}\theta_{b}p_{b}} \end{split}$$

with a largely undetermined function " $w(x) = \omega_{\beta}^{\Theta}(U(x))$ "

- The ω^Θ_β are translationally and rotationally invariant, normalized: ω^Θ_β(1) = 1, real: ω^Θ_β(A^{*}) = ω^Θ_β(A)
- > Calculation done using "twisted" KMS functionals [Buchholz/Longo 99]

Main Question: For which w is ω_{β}^{Θ} a KMS state ($\omega_{\beta}^{\Theta}(A^*A) \ge 0$)?

Main Question: For which w is ω_{β}^{Θ} a KMS state ($\omega_{\beta}^{\Theta}(A^*A) \ge 0$)?

- On each $\mathcal{A}_{\{\theta\}}$, positivity holds.
- $\boldsymbol{\flat}$ Hard to explicitly see positivity on $\mathcal{A}_{\Theta}.$ Numerics?
- > If w continuous: Positivity of two-point function,

$$\omega_{eta}^{\Theta}(A^*A)\geq 0 \quad ext{for} \quad A=\sum_{k=1}^n \phi_{ heta_k}(f_k)\,,$$

requires w to be of positive type. Sufficient?

Main Question: For which w is ω_{β}^{Θ} a KMS state ($\omega_{\beta}^{\Theta}(A^*A) \ge 0$)?

- On each $\mathcal{A}_{\{\theta\}}$, positivity holds.
- $\boldsymbol{\flat}$ Hard to explicitly see positivity on $\mathcal{A}_{\Theta}.$ Numerics?
- > If w continuous: Positivity of two-point function,

$$\omega_{eta}^{\Theta}(A^*A) \geq 0 \quad ext{for} \quad A = \sum_{k=1}^n \phi_{ heta_k}(f_k) \,,$$

requires w to be of positive type. Sufficient?

Positivity by continuity of deformation

Let $A = \sum \phi(f_1) \cdots \phi(f_n) \in \mathcal{A}$ with $\omega_\beta(A^*A) > 0$ and $\hat{A} = \sum \phi(f_1)_{\theta_1} \cdots \phi(f_n)_{\theta_n}$. Then there exists $\varepsilon > 0$ such that

$$\omega^{\Theta}_{eta}(\hat{A}^*\hat{A})>0$$

for all θ_k with $\|\theta_k\| < \varepsilon$.

Main Question: For which w is ω_{β}^{Θ} a KMS state ($\omega_{\beta}^{\Theta}(A^*A) \ge 0$)?

- On each $\mathcal{A}_{\{\theta\}}$, positivity holds.
- $\boldsymbol{\flat}$ Hard to explicitly see positivity on $\mathcal{A}_{\Theta}.$ Numerics?
- > If w continuous: Positivity of two-point function,

$$\omega_{eta}^{\Theta}(A^*A) \geq 0 \quad ext{for} \quad A = \sum_{k=1}^n \phi_{ heta_k}(f_k) \,,$$

requires w to be of positive type. Sufficient?

Positivity by continuity of deformation

Let $A = \sum \phi(f_1) \cdots \phi(f_n) \in \mathcal{A}$ with $\omega_\beta(A^*A) > 0$ and $\hat{A} = \sum \phi(f_1)_{\theta_1} \cdots \phi(f_n)_{\theta_n}$. Then there exists $\varepsilon > 0$ such that

$$\omega_{eta}^{\Theta}(\hat{A}^{*}\hat{A})>0$$

for all θ_k with $\|\theta_k\| < \varepsilon$.

Problem: ε depends on *A*.

Approximation by Gibbs states

Produce an explicit *w*-function by finite volume approximation

- Formulate deformed field theory in a box [0, L]³ with periodic boundary conditions
- KMS states = (normal) Gibbs states $\omega_{\beta,L}(A) = \frac{\text{Tr}(e^{-\beta H}A)}{\text{Tr}(e^{-\beta H})}$

Approximation by Gibbs states

Produce an explicit *w*-function by finite volume approximation

- Formulate deformed field theory in a box [0, L]³ with periodic boundary conditions
- KMS states = (normal) Gibbs states $\omega_{\beta,L}(A) = \frac{\text{Tr}(e^{-\beta H}A)}{\text{Tr}(e^{-\beta H})}$
- » thermodynamic limit:

$$w(x) = \lim_{L \to \infty} \omega_{\beta,L}(U_L(x)) = \begin{cases} 1 & ; x = 0 \\ 0 & ; x \neq 0 \end{cases}$$

$$\begin{split} \omega_{\beta}^{\Theta}(\tilde{\phi}_{\theta_{1}}(p_{1})\cdots\tilde{\phi}_{\theta_{2n}}(p_{2n})) &= \prod_{1 \leq l < r \leq n} e^{ip_{l} \cdot \theta_{l}p_{r}} \sum_{(\boldsymbol{I},\boldsymbol{r}) \in \mathcal{C}_{2n}^{\boldsymbol{\theta}}} \prod_{k=1}^{n} \frac{\tilde{\mathcal{C}}(p_{l_{k}},p_{r_{k}})}{1 - e^{\beta p_{l_{k}}^{\boldsymbol{\theta}}}} \\ \mathcal{C}_{2n}^{\boldsymbol{\theta}} &= \{(\boldsymbol{I},\boldsymbol{r}) \in \mathcal{C}_{2n} : \theta_{l_{k}} = \theta_{r_{k}}\} \end{split}$$

Approximation by Gibbs states

Produce an explicit *w*-function by finite volume approximation

- Formulate deformed field theory in a box [0, L]³ with periodic boundary conditions
- KMS states = (normal) Gibbs states $\omega_{\beta,L}(A) = \frac{\text{Tr}(e^{-\beta H}A)}{\text{Tr}(e^{-\beta H})}$
- » thermodynamic limit:

$$w(x) = \lim_{L \to \infty} \omega_{\beta, L}(U_L(x)) = \begin{cases} 1 & ; x = 0 \\ 0 & ; x \neq 0 \end{cases}$$

$$\omega_{\beta}^{\Theta}(\tilde{\phi}_{\theta_{1}}(p_{1})\cdots\tilde{\phi}_{\theta_{2n}}(p_{2n})) = \prod_{1 \leq l < r \leq n} e^{ip_{l} \cdot \theta_{l}p_{r}} \sum_{(\boldsymbol{I},\boldsymbol{r}) \in \mathcal{C}_{2n}^{\Theta}} \prod_{k=1}^{n} \frac{\tilde{\mathcal{C}}(p_{l_{k}}, p_{r_{k}})}{1 - e^{\beta p_{l_{k}}^{0}}}$$
$$\mathcal{C}_{2n}^{\Theta} = \{(\boldsymbol{I}, \boldsymbol{r}) \in \mathcal{C}_{2n} : \theta_{l_{k}} = \theta_{r_{k}}\}$$

For distinct $\theta_1, ..., \theta_n$:

$$\omega_{\beta}^{\Theta}((\phi_{\theta_1}(f_1)\cdots\phi_{\theta_n}(f_n))^*(\phi_{\theta_1}(f_1)\cdots\phi_{\theta_n}(f_n)))=\prod_{k=1}^n\omega_{\beta}(\phi(f_k)^*\phi(f_k))$$

- ▶ Covariant QFTs on Moyal Minkowski space with observable algebra $A_{\Theta} = \bigvee_{\theta \in \Theta} A_{\{\theta\}}$
- KMS states on each A_{{θ}} are easy to get (positivity of Rieffel's deformation)
- $\boldsymbol{\mathsf{v}}$ KMS functionals on full \mathcal{A}_Θ can be computed.
- Positivity?
- > Structure of set of KMS states on \mathcal{A}_{Θ} needs further investigation