Multiplicative deformations of the Borchers-Uhlmann algebra

arXiv 1104.1948

 to appear in CMPGandalf Lechner
University of Vienna

1 July, 2011-Göttingen

Main focus of algebraic QFT since its invention:

- Model-independent analysis of QFT (nets of operator algebras)
- Development of tools for computing physically interesting quantities once a model is given

Моге recently: Construction of models with tools of algebraic QFT

This talk: Construction of models by algebraic deformation methods

Construction of QFT models via wedge algebras

Wedge algebras:

Input: Hilbert space \mathcal{H} with representation U of the Poincaré group and vacuum vector Ω.
Wanted: $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ von Neumann "wedge algebra":

- $U(x, \Lambda) \mathcal{M} U(x, \Lambda)^{-1} \subset \mathcal{M}$ for $(x, \Lambda) \in \mathcal{P}_{+}$with $\Lambda W_{0}+x \subset W_{0}$
- $U(0, j) \mathcal{M} U(0, j)^{-1} \subset \mathcal{M}^{\prime}$
- Ω cyclic for \mathcal{M}
with
- $W_{0}=\left\{x \in \mathbb{R}^{d}: x_{1}>\left|x_{0}\right|\right\}=$ right wedge
- reflection

$$
j\left(x^{0}, . ., x^{d-1}\right)=\left(-x^{0},-x^{1}, x^{2}, . ., x^{d-1}\right)
$$

- With such data U, \mathcal{M}, a QFT model can be generated.

Deformations of wedge algebras

- One approach to finding such pairs U, \mathcal{M} is to start with data U_{0}, \mathcal{M}_{0} defining a free field theory, and search for solutions U_{0}, \mathcal{M} by deforming $\mathcal{M}_{0} \rightsquigarrow \mathcal{M}$ in a certain manner.
- A two-parameter family of solutions is known (warping)
\rightarrow Grosse/GL 07 Buchholz/Summers 08 Buchholz/GL/Summers 10
- Applications of this method: Dappiaggi/cL/Morfa-Morales 10
\rightarrow Dybalski/Tanimoto 10 Morfa-Morales 11
0 Other deformations Longo/Witten 10 Longo/Rehren 11 Tanimoto ??

Неге:

Many more deformations, constructed in a Wightman framework.

The Borchers-Uhlmann algebra \mathscr{S}

- $\underline{\mathscr{S}}=\bigoplus_{n=0}^{\infty} \mathscr{S}_{n}$ with $\mathscr{S}_{n}:=\mathscr{S}\left(\mathbb{R}^{n d}\right), \mathscr{S}_{0}:=\mathbb{C}$, as top. space.
- elements $f=\left(f_{0}, f_{1}, \ldots f_{N}, 0 \ldots\right), f_{n} \in \mathscr{S}_{n}$
- product

$$
(f \otimes g)_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{n} f_{k}\left(x_{1}, \ldots, x_{k}\right) g_{n-k}\left(x_{k+1}, \ldots, x_{n}\right)
$$

0 identity $1_{n}:=\delta_{n, 0}$

- *-involution

$$
f^{*}{ }_{n}\left(x_{1}, \ldots, x_{n}\right)=\overline{f_{n}\left(x_{n}, \ldots, x_{1}\right)} .
$$

- automorphic Poincaré action

$$
\left(\alpha_{a, \Lambda} f\right)_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(\overline{f_{n}\left(\Lambda^{-1}\left(x_{1}-a\right), \ldots, \Lambda^{-1}\left(x_{n}-a\right)\right)}\right)
$$

Products on \mathscr{S}

- Deformations of algebras C Gerstenhaber 64: deform the product
- product := bilinear associative separately continuous map $\mathscr{L} \times \underline{\mathscr{L}} \rightarrow \underline{\mathscr{L}}, f, g \mapsto f \hat{\otimes} g$ with

$$
(f \hat{\otimes} g)^{*}=g^{*} \hat{\otimes} f^{*}, \quad f \hat{\otimes} 1=f=1 \hat{\otimes} f .
$$

- As a tensor algebra (\cong free algebra), $\mathscr{\mathscr { L }}$ is rigid. Its products are

$$
f \hat{\otimes} g=\rho^{-1}(\rho(f) \otimes \rho(g))
$$

Only trivial deformations of $\underline{\mathscr{S}}$ as an associative algebra exist.

- But: Situation very different for nets in $\underline{\mathscr{S}}$. Here also products $f \otimes_{\rho} g:=\rho^{-1}(\rho(f) \otimes \rho(g))$ give rise to non-trivial deformations.

Deformation maps and compatible states

Definition:

A deformation map (relative to W_{0}) is a linear homeomorphism $\rho: \underline{\mathscr{L}} \rightarrow \underline{\mathscr{L}}$ such that
$\bigcirc \rho(1)=1$.

- $\rho(f)^{*}=\rho\left(f^{*}\right)$.
$\bigcirc \rho \circ \alpha_{x, \Lambda}=\alpha_{x, \Lambda} \circ \rho$ for all $(x, \Lambda) \in \mathcal{P}_{+}$with $\Lambda W_{0}+x \subset W_{0}$.
- Deformation maps form a group \mathcal{R}.
- ρ is not invariant under all Lorentz transformations,

$$
\rho_{\Lambda}:=\alpha_{\Lambda} \circ \rho \circ \alpha_{\Lambda}^{-1} \neq \rho .
$$

- Need to represent the different product structures $\otimes_{\rho \wedge}$ (corresponding to different wedges) on the same Hilbert space.

Deformation maps and compatible states

Definition:

A state ω on $\underline{\mathscr{S}}$ is called compatible with a deformation map ρ if

$$
\omega\left(f \otimes_{\rho} g\right)=\omega(f \otimes g), \quad f, g \in \underline{\mathscr{S}}
$$

Lemma:

Let ρ be a deformation map and ω a ρ-compatible state. Then ω is also a state on $\left(\underline{\mathscr{S}}, \otimes_{\rho}\right)$, and the GNS triples $\left(\mathcal{H}_{\omega}, \phi_{\omega}, \Omega_{\omega}\right)$ of $(\underline{\mathscr{L}}, \otimes)$ and $\left(\mathcal{H}_{\omega}^{\rho}, \phi_{\omega}^{\rho}, \Omega_{\omega}^{\rho}\right)$ of $\left(\underline{\mathscr{L}}, \otimes_{\rho}\right)$ are related by

$$
\begin{aligned}
\mathcal{H}_{\omega}^{\rho} & =\mathcal{H}_{\omega} \\
\Omega_{\omega}^{\rho} & =\Omega_{\omega} \\
\phi_{\omega}^{\rho}(f) \phi_{\omega}(g) \Omega_{\omega} & =\phi_{\omega}\left(f \otimes_{\rho} g\right) \Omega_{\omega}, \quad f, g \in \underline{\mathscr{S}} .
\end{aligned}
$$

Deformation maps and compatible states

A ρ-compatible Poincaré invariant state ω defines deformed fields

$$
\phi_{\omega}^{\rho_{\Lambda}}(f), \quad f \in \underline{\mathscr{S}}, \quad \rho_{\Lambda}:=\alpha_{\Lambda} \circ \rho \circ \alpha_{\Lambda}^{-1}
$$

as operators on the GNS space of $(\underline{\mathscr{L}}, \otimes), \omega$, with

$$
\begin{aligned}
\phi_{\omega}^{\rho_{\Lambda}}(f) \phi_{\omega}^{\rho_{\Lambda}}(g) & =\phi_{\omega}^{\rho_{\Lambda}}\left(f \otimes_{\rho_{\Lambda}} g\right) \\
\phi_{\omega}^{\rho_{\Lambda}}(f)^{*} & \supset \phi_{\omega}^{\rho_{\Lambda}}\left(f^{*}\right) \\
U_{\omega}(x, \Lambda) \phi_{\omega}^{\rho}(f) U_{\omega}(x, \Lambda)^{-1} & =\phi_{\omega}^{\rho_{\Lambda}}\left(\alpha_{x, \Lambda} f\right) \\
\phi_{\omega}^{\rho_{\Lambda}}(f) \Omega_{\omega} & =\phi_{\omega}(f) \Omega_{\omega}
\end{aligned}
$$

The *-algebra $\mathscr{P}_{\omega, 0}^{\rho}$ generated by all $\phi_{\omega}^{\rho}(f)$, supp $f_{n} \subset W_{0}^{n}$ satisfies

$$
U_{\omega}(x, \Lambda) \mathscr{P}_{\omega, 0}^{\rho} U_{\omega}(x, \Lambda)^{-1} \subset \mathscr{P}_{\omega, 0}^{\rho} \text { for } \Lambda W_{0}+x \subset W_{0}
$$

and Ω_{ω} is cyclic for $\mathscr{P}_{\omega, 0}^{\rho}$ if it is cyclic for $\mathscr{P}_{\omega, 0}^{\text {id }}$.

Procedure for deforming wedge-local QFT

- Find (class of) deformation maps ρ on $\underline{\mathscr{S}}$
- Find states compatible with ρ (at least free field Wightman state should be compatible)
- Adjust ρ and ω in such a way that ρ is wedge-local in ω :

$$
\left[\phi_{\omega}^{\rho}(f), \phi_{\omega}^{\rho_{j}}(g)\right] \psi=0
$$

$f \in \mathscr{\mathscr { S }}\left(W_{0}\right), g \in \underline{\mathscr{S}}\left(j W_{0}\right), \Psi \in \phi_{\omega}(\underline{\mathscr{S}}) \Omega_{\omega}$.

- Possibly proceed to von Neumann algebras of bounded functions of field operators, $\mathcal{M}_{\omega}^{\rho}:=\left\{\exp i \phi_{\omega}^{\rho}(f): f \in \mathscr{S}_{\mathbb{R}}\left(W_{0}\right)\right\}^{\prime \prime}$.
- Then $\mathcal{M}_{\omega}^{\rho}, U_{\omega}$ satisfy our requirements, and generate a QFT.

Rest of the talk: Carry out this program for a simple class of ρ 's.

Multiplicative deformations

- A deformation map is called multiplicative (in momentum space) if it has the form

$$
\widetilde{\rho(f)_{n}}\left(p_{1}, \ldots, p_{n}\right)=\rho_{n}\left(p_{1}, \ldots, p_{n}\right) \cdot \tilde{f}_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

\rightarrow abelian subgroup of deformations $\mathcal{R}_{0} \subset \mathcal{R}$.

Lemma:

For ρ to be a deformation map, the ρ_{n} must be smooth and satisfy

- polynomial bounds from above and below on their derivatives
- For each Lorentz transformation \wedge with $\wedge W_{0}=W_{0}$,

$$
\rho_{n}\left(\wedge p_{1}, \ldots, \Lambda p_{n}\right)=\rho_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

$\bigcirc \overline{\rho_{n}\left(-p_{n}, \ldots,-p_{1}\right)}=\rho_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\right.$ for $\left.\left(f \otimes_{\rho} g\right)^{*}=g^{*} \otimes_{\rho} f^{*}\right)$

- $\rho_{0}=1\left(\right.$ for $\left.f \otimes_{\rho} 1=f=1 \otimes_{\rho} f\right)$

Multiplicative deformations and compatible states

- The deformed product associated with $\rho \in \mathcal{R}_{0}$ is
$\left.\widetilde{\left(f \otimes_{\rho} g\right.}\right)_{n}\left(p_{1}, . ., p_{n}\right)=\sum_{k=0}^{n} \rho_{k n}\left(p_{1}, \ldots, p_{n}\right) \cdot \tilde{f}_{k}\left(p_{1}, . ., p_{k}\right) \tilde{g}_{n-k}\left(p_{k+1}, . ., p_{n}\right)$
with $\rho_{k n}\left(p_{1}, \ldots, p_{n}\right):=\frac{\rho_{k}\left(p_{1}, . ., p_{k}\right) \rho_{n-k}\left(p_{k+1}, . ., p_{n}\right)}{\rho_{n}\left(p_{1}, . ., p_{n}\right)}$
- Can take $\rho_{1}\left(p_{1}\right)=1$ without loss of generality.
- Compatible states: Need

$$
\begin{aligned}
& \int d \boldsymbol{p} \tilde{\omega}_{n}\left(-p_{1}, \ldots,-p_{n}\right) \rho_{k n}\left(p_{1}, . ., p_{n}\right) \tilde{f}_{k}\left(p_{1}, . ., p_{k}\right) \tilde{g}_{n-k}\left(p_{k+1}, . ., p_{n}\right) \\
& =\int d \boldsymbol{p} \tilde{\omega}_{n}\left(-p_{1}, \ldots,-p_{n}\right) \tilde{f}_{k}\left(p_{1}, . ., p_{k}\right) \tilde{g}_{n-k}\left(p_{k+1}, . ., p_{n}\right)
\end{aligned}
$$

Multiplicative deformations and compatible states

- If $\rho \in \mathcal{R}_{0}$ is compatible with all translationally invariant states, then

$$
\rho_{n}\left(p_{1}, \ldots, p_{n}\right)=\rho_{k}\left(p_{1}, \ldots, p_{k}\right) \rho_{n-k}\left(p_{k+1}, \ldots, p_{n}\right)
$$

for all $k \in\{1, \ldots, n-1\}$ and $p_{1}+\ldots+p_{n}=0$.

- One solution is known (warped convolution)
- More solutions? ... $\underset{\text { Alazzawi }}{ }$

Deformation two-point functions

Proposition:

Let $\rho_{2} \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ be a two-point function of a multiplicative deformation satisfying

$$
\rho_{2}(p,-p)=1, \quad \rho_{2}(-p, q)=\rho_{2}(p,-q)=\rho_{2}(q, p)=\rho_{2}(p, q)^{-1} .
$$

Define
$\rho_{0}:=1, \quad \rho_{1}\left(p_{1}\right):=1, \quad \rho_{n}\left(p_{1}, \ldots, p_{n}\right)=\prod_{1 \leq 1<r \leq n} \rho_{2}\left(p_{1}, p_{r}\right), \quad n \geq 2$.

Then

- The ρ_{n} define a multiplicative deformation $\rho \in \mathcal{R}_{0}$.
0ρ is compatible with all quasi-free translationally inv. states ω.
Problem of finding deformations reduced to two-point function ρ_{2}.

Definition:

A deformation function is a smooth function $R: \mathbb{R} \rightarrow \mathbb{C}$, polynomially bounded in all derivatives, such that

- $R(a)^{-1}=\overline{R(a)}=R(-a), \quad R(0)=1$.
- The Fourier transform \tilde{R} of R has support on the positive half line.
- Support restriction on $\tilde{R} \Leftrightarrow$ analyticity and boundedness of R.
- Examples:

$$
R(a)=e^{i c a} \prod_{k=1}^{N} \frac{z_{k}-a}{z_{k}+a}, \quad c \geq 0, \operatorname{Im} z_{1}, \ldots, \operatorname{Im} z_{N} \geq 0
$$

These functions appear in many places

- Special case: $R(a)=e^{i a}$

Definition

A real $(d \times d)$-matrix Q is called admissible Buchho1z/GL/Summers 10 if

- Q is antisymmetric w.r.t. the Minkowski inner product
$0 \wedge Q \Lambda^{-1}=\left\{\begin{aligned} Q & ; \Lambda \in \mathcal{L}_{+}^{\uparrow} \text { with } \Lambda W_{0}=W_{0} \\ -Q & ; \Lambda \in \mathcal{L}_{+}^{\downarrow} \text { with } \Lambda W_{0}=W_{0}\end{aligned}\right.$
- $Q V^{+} \subset W_{0}$.
Q must have the form

$$
Q=\left(\begin{array}{cccc}
0 & \kappa & 0 & 0 \\
\kappa & 0 & 0 & 0 \\
0 & 0 & 0 & \kappa^{\prime} \\
0 & 0 & -\kappa^{\prime} & 0
\end{array}\right) \quad \text { with } \kappa \geq 0, \kappa^{\prime} \in \mathbb{R}
$$

Lemma:

Let R be a deformation function and Q an admissible matrix. Then the deformation two-point function

$$
\rho_{2}(p, q):=R(-p \cdot Q q)
$$

defines a multiplicative deformation $\rho(R, Q) \in \mathcal{R}_{0}$ compatible with all quasi-free translationally invariant states.

- Transformation law:

$$
\alpha_{x, \Lambda}\left(f \otimes_{\rho(R, Q)} g\right)=\alpha_{x, \Lambda}(f) \otimes_{\rho\left(R, \pm \wedge Q \Lambda^{-1}\right)} \alpha_{x, \Lambda}(g)
$$

Wedge-Locality

Theorem:

Let R be a deformation function, and Q an admissible matrix. Then the deformation $\rho(R, Q)$ is wedge-local in any quasi-free Wightman state. Important ingredients of proof:

- Need to show that for $f \in \mathscr{\mathscr { L }}\left(W_{0}\right), g^{\prime} \in \mathscr{S}\left(W_{0}^{\prime}\right), h, k \in \mathscr{S}$,

$$
\omega\left(\left(h \otimes_{\rho} f\right) \otimes\left(g^{\prime} \otimes_{\rho^{\prime}} k\right)\right)=\omega\left(\left(h \otimes_{\rho^{\prime}} g^{\prime}\right) \otimes\left(f \otimes_{\rho} k\right)\right) .
$$

- The automorphisms

$$
\left(\widetilde{\tau_{x}^{R} f}\right)_{n}\left(p_{1}, \ldots p_{n}\right):=\prod_{k=1}^{n} R\left(x \cdot p_{k}\right) \cdot \tilde{f}_{n}\left(p_{1}, \ldots, p_{n}\right)
$$

satisfy

$$
\begin{aligned}
\tau_{x}^{R}\left(\underline{\mathscr{L}}\left(W_{0}\right)\right) & \subset \mathscr{\mathscr { L }}\left(W_{0}\right) \text { for } x \in \overline{W_{0}}, \\
\operatorname{supp}\left(h_{m} \otimes_{\rho} f_{n}\right) & \subset \mathbb{R}^{m d} \times W_{0}^{n} \text { for supp } \tilde{h}_{m} \subset V_{-}^{m}, \quad \operatorname{supp} f_{n} \subset W_{0}^{n} .
\end{aligned}
$$

Fock space representations

- Quasi-free Wightman state $\omega \rightarrow$ Fock space \mathcal{H}_{ω} as GNS space.
- If $\tilde{\omega}_{2}(p, q)=\delta(p+q) \delta\left(p^{0}-\varepsilon_{\boldsymbol{p}}\right) \varepsilon_{\boldsymbol{p}}^{-1}, \varepsilon_{\boldsymbol{p}}=\left(\boldsymbol{p}^{2}+m^{2}\right)^{1 / 2}, m>0$, then ϕ_{ω} is the scalar massive Klein-Gordon field.

Deformed field $\phi_{R, Q}:=\phi_{\omega}^{\rho(R, Q)}$ satisfies by construction:

- $U(x, \Lambda) \phi_{R, Q}(f) U(x, \Lambda)^{-1}=\phi_{R, \Lambda Q \wedge^{-1}}\left(\alpha_{x, \Lambda} f\right)$ for $(x, \Lambda) \in \mathcal{P}_{+}^{\uparrow}$.
- $U(0, j) \phi_{R, Q}(f) U(0, j)^{-1}=\phi_{R,-Q}\left(\alpha_{j} f\right)$.
- $\left[\phi_{R, Q}(f), \phi_{R,-Q}(g)\right] \Psi=0$ for $f \in \underline{\mathscr{S}}\left(W_{0}\right), g \in \underline{\mathscr{S}}\left(W_{0}^{\prime}\right), \Psi \in \mathcal{D}$.
- still solves Klein-Gordon equation
- $\lambda \mapsto \phi_{R, \lambda \cdot Q}(f) \Psi$ continuous, $\Psi \in \mathcal{D}$. In particular

$$
\lim _{\lambda \rightarrow 0} \phi_{R, \lambda \cdot Q}(f) \Psi=\phi(f) \Psi
$$

Von Neumann algebras and modular data

With $\mathscr{P}_{R}\left(\wedge W_{0}+x\right):={ }^{*}$-alg. gen. by $\phi_{R, \wedge Q \wedge^{-1}}(f), f \in \underline{\mathscr{S}}\left(\wedge W_{0}+x\right)$,

$$
W \longmapsto \mathscr{P}_{R}(W)
$$

is an isotonous, covariant, (wedge-) local net of *-algebras satisfying the Reeh-Schlieder property.

- Passage to von Neumann algebras $\mathcal{M}_{R}(W)$ possible here (essentially self-adjoint field operators).
- Ω is cyclic and separating for $\mathcal{M}_{R}\left(W_{0}\right)$, with modular data independent of R.
- Infinite family of solutions to inverse problem in modular theory
- Wollenberg
- Ω is not cyclic for spacelike cones.

Deformed field operators

- Explicit realization of deformed fields: Replace creation/annihilation operators a\# (p) by

$$
\begin{aligned}
a_{R, Q}(p):=a(p) T_{R}(Q p), & a_{R, Q}^{\dagger}(p):=a^{\dagger}(p) T_{R}(-Q p), \\
\left(T_{R}(x) \Psi\right)_{n}\left(q_{1}, \ldots, q_{n}\right):= & \prod_{k=1}^{n} R\left(x \cdot q_{k}\right) \cdot \Psi_{n}\left(q_{1}, \ldots, q_{n}\right) .
\end{aligned}
$$

- For $f_{1} \in \mathscr{S}_{1}$, the deformed fields take the form

$$
\phi_{R, Q}\left(f_{1}\right)=(2 \pi)^{-d} \int d p d x e^{-i p \cdot x} U(x, 1) \phi\left(f_{1}\right) U(-x, 1) T_{R}(-Q p)
$$

Formula similar to warped convolution, but not valid for higher tensors $f_{n} \in \mathscr{S}_{n}, n>1$.

Two-particle scattering

- The S-matrix for $2 \rightarrow 2$ processes can be calculated. For $f_{1}, g_{1}, h_{1}, k_{1} \in \mathscr{S}_{1}$ with velocity supports $\Gamma\left(f_{1}\right)-\Gamma\left(g_{1}\right) \subset W_{0}$, $\Gamma\left(h_{1}\right)-\Gamma\left(k_{1}\right) \subset W_{0}$,

$$
\begin{aligned}
& \left\langle f_{1}^{+}\right. \\
& \left.\quad \times_{\text {out }}^{R} g_{1}^{+}, h_{1}^{+} \times \times_{\text {in }}^{R} k_{1}^{+}\right\rangle \\
& \quad=\int d \mu\left(p_{1}\right) d \mu\left(p_{2}\right) R\left(-p_{1} \cdot Q p_{2}\right)^{2} \overline{\tilde{f}_{1}\left(p_{1}\right)} \overline{\tilde{g}_{1}\left(p_{2}\right)} \tilde{h}_{1}\left(p_{1}\right) \widetilde{k}_{1}\left(p_{2}\right) .
\end{aligned}
$$

- Phase shift effect, no particle production
- S-matrix fully Lorentz invariant only in $d=1+1$
- The deformation function is the root of the two-particle S-matrix

Deformations of QFTs and integrable models

- When deforming in $d=1+1$, one obtains integrable models.
- rapidity-parametrized on-shell momenta $p(\theta)=m(\cosh \theta, \sinh \theta)$ lead to

$$
S\left(\theta_{1}-\theta_{2}\right):=R\left(-p\left(\theta_{1}\right) \cdot Q p\left(\theta_{2}\right)\right)^{2}=R\left(\kappa m^{2} \sinh \left(\theta_{1}-\theta_{2}\right)\right)^{2}
$$

with the usual unitarity, analyticity, crossing relations of the scattering function S.

- Deformed ann./creation operators \rightarrow Zamolodchikov algebra
- Same structure as in algebraic construction of integrable models
\rightarrow Schroer $97 \rightarrow$ Schroer 00 \rightarrow GL 03 Buchholz/GL 04 \rightarrow GL 06

Theorem:

Every 2d integrable QFT with scattering function S of the above form arises from a free field theory by deformation. If S is regular, then the deformed theory satisfies Reeh-Schlieder for double cones above a minimal size $\underset{\square}{\circ} 06$.

Conclusion

- Multiplicative deformations: Large family of new QFT deformations
- Lead to wedge-local covariant models in any dimension
- In $d=1+1$, provide deformations of free field theories into fully local integrable QFTs
- In $d>1+1$, more complicated deformations (non-multiplicative) for more realistic interaction needed (particle production).
- Need deformation maps of the form

$$
\widetilde{\rho(f)_{n}}\left(p_{1}, . ., p_{n}\right)=\sum_{m=0}^{\infty} \int d q_{1} . . d q_{m} \rho_{n m}\left(p_{1}, . ., p_{n} ; q_{1}, . ., q_{m}\right) \tilde{f}_{m}\left(q_{1}, . ., q_{m}\right)
$$

- More complicated, but might give interacting models in $d>1+1$ (wedge-local fields no longer polarization-free)

