Multiplicative deformations of the Borchers-Uhlmann algebra

arXiv 1104.1948 to appear in CMP

Gandalf Lechner

University of Vienna

1 July, 2011 - Göttingen

1/23

Main focus of algebraic QFT since its invention:

- Model-independent analysis of QFT (nets of operator algebras)
- Development of tools for computing physically interesting quantities once a model is given

More recently: Construction of models with tools of algebraic QFT

This talk: Construction of models by algebraic deformation methods

Construction of QFT models via wedge algebras

2/23

Wedge algebras:

Baumgärtel/Wollenberg 92 Buchholz/Summers

Input: Hilbert space \mathcal{H} with representation U of the Poincaré group and vacuum vector Ω .

Wanted: $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ von Neumann "wedge algebra":

- $U(x,\Lambda)\mathcal{M}U(x,\Lambda)^{-1} \subset \mathcal{M}$ for $(x,\Lambda) \in \mathcal{P}_+$ with $\Lambda W_0 + x \subset W_0$
- $U(0,j)\mathcal{M}U(0,j)^{-1}\subset \mathcal{M}'$
- \circ Ω cyclic for \mathcal{M}

with

• $W_0 = \{x \in \mathbb{R}^d : x_1 > |x_0|\} = \text{right wedge}$

• reflection

$$j(x^0, ..., x^{d-1}) = (-x^0, -x^1, x^2, ..., x^{d-1})$$

• With such data U, \mathcal{M} , a QFT model can be generated.

One approach to finding such pairs U, M is to start with data U₀, M₀ defining a free field theory, and search for solutions U₀, M by deforming M₀ → M in a certain manner.

3/23

A two-parameter family of solutions is known (warping)

	Grosse/GL 07 Buchholz/Summers 08 Buchholz/GL/Summers 10
0	Applications of this method: (• Dappiaggi/GL/Morfa-Morales 10)
	Dybalski/Tanimoto 10 Morfa-Morales 11
0	Other deformations (+ Longo/Witten 10) (+ Longo/Rehren 11) (+ Tanimoto ??)

Неге:

Many more deformations, constructed in a Wightman framework.

The Borchers-Uhlmann algebra $\underline{\mathscr{S}}$

S = ⊕_{n=0}[∞] *S_n* with *S_n* := *S*(ℝnd), *S₀* := ℂ, as top. space.
elements *f* = (*f*₀, *f*₁, ...*f_N*, 0...), *f_n* ∈ *S_n*product

$$(f \otimes g)_n(x_1,...,x_n) = \sum_{k=0}^n f_k(x_1,...,x_k) g_{n-k}(x_{k+1},...,x_n).$$

4/23

$$f^*_n(x_1,...,x_n) = \overline{f_n(x_n,...,x_1)}.$$

automorphic Poincaré action

$$(\alpha_{a,\Lambda}f)_n(x_1,...,x_n) = (\overline{f_n(\Lambda^{-1}(x_1-a),...,\Lambda^{-1}(x_n-a))})$$

Products on $\underline{\mathscr{S}}$

- Deformations of algebras (Gerstenhaber 64): deform the product
- **product** := bilinear associative separately continuous map $\mathscr{L} \times \mathscr{L} \to \mathscr{L}$, $f, g \mapsto f \otimes g$ with

$$(f \otimes g)^* = g^* \otimes f^*, \qquad f \otimes 1 = f = 1 \otimes f.$$

5/23

• As a tensor algebra (\cong free algebra), $\underline{\mathscr{S}}$ is **rigid**. Its products are

$$f \otimes g = \rho^{-1}(\rho(f) \otimes \rho(g))$$

Only trivial deformations of $\underline{\mathscr{S}}$ as an associative algebra exist.

But: Situation very different for nets in *S*. Here also products
 f ⊗_ρ g := ρ⁻¹(ρ(f) ⊗ ρ(g)) give rise to non-trivial deformations.

Definition:

A deformation map (relative to W_0) is a linear homeomorphism $\rho: \mathscr{L} \to \mathscr{L}$ such that

- $\rho(1) = 1.$
- $\rho(f)^* = \rho(f^*).$
- $\rho \circ \alpha_{x,\Lambda} = \alpha_{x,\Lambda} \circ \rho$ for all $(x,\Lambda) \in \mathcal{P}_+$ with $\Lambda W_0 + x \subset W_0$.
- Deformation maps form a group \mathcal{R} .
- ρ is not invariant under all Lorentz transformations,

$$\rho_{\Lambda} := \alpha_{\Lambda} \circ \rho \circ \alpha_{\Lambda}^{-1} \neq \rho.$$

6/23

 Need to represent the different product structures ⊗_{ρ_Λ} (corresponding to different wedges) on the same Hilbert space.

Definition:

A state ω on $\underline{\mathscr{S}}$ is called **compatible** with a deformation map ρ if

$$\omega(f \otimes_{\rho} g) = \omega(f \otimes g), \qquad f, g \in \underline{\mathscr{S}}.$$

7/23

Lemma:

Let ρ be a deformation map and ω a ρ -compatible state. Then ω is also a state on $(\underline{\mathscr{L}}, \otimes_{\rho})$, and the GNS triples $(\mathcal{H}_{\omega}, \phi_{\omega}, \Omega_{\omega})$ of $(\underline{\mathscr{L}}, \otimes)$ and $(\mathcal{H}_{\omega}^{\rho}, \phi_{\omega}^{\rho}, \Omega_{\omega}^{\rho})$ of $(\underline{\mathscr{L}}, \otimes_{\rho})$ are related by

$$egin{aligned} \mathcal{H}^{
ho}_{\omega} &= \mathcal{H}_{\omega} \ , \ \Omega^{
ho}_{\omega} &= \Omega_{\omega} \ , \ \phi^{
ho}_{\omega}(f) \phi_{\omega}(g) \Omega_{\omega} &= \phi_{\omega}(f \otimes_{
ho} g) \Omega_{\omega} \ , \qquad f,g \in \mathscr{\underline{S}} \ . \end{aligned}$$

Deformation maps and compatible states

A ρ -compatible Poincaré invariant state ω defines deformed fields

$$\phi_{\omega}^{\rho_{\Lambda}}(f), \qquad f \in \underline{\mathscr{S}}, \quad \rho_{\Lambda} := \alpha_{\Lambda} \circ \rho \circ \alpha_{\Lambda}^{-1},$$

8/23

as operators on the GNS space of $(\mathscr{G},\otimes),\omega$, with

$$egin{aligned} &\phi^{
ho_\Lambda}_\omega(f)\phi^{
ho_\Lambda}_\omega(g)=\phi^{
ho_\Lambda}_\omega(f\otimes_{
ho_\Lambda}g)\ &\phi^{
ho_\Lambda}_\omega(f)^*\supset\phi^{
ho_\Lambda}_\omega(f^*)\ &U_\omega(x,\Lambda)\phi^{
ho}_\omega(f)U_\omega(x,\Lambda)^{-1}=\phi^{
ho_\Lambda}_\omega(lpha_{x,\Lambda}f)\ &\phi^{
ho_\Lambda}_\omega(f)\Omega_\omega=\phi_\omega(f)\Omega_\omega \end{aligned}$$

The *-algebra $\mathscr{P}^{\rho}_{\omega,0}$ generated by all $\phi^{\rho}_{\omega}(f)$, supp $f_n \subset W^n_0$ satisfies

$$U_{\omega}(x,\Lambda)\mathscr{P}^{
ho}_{\omega,0} U_{\omega}(x,\Lambda)^{-1} \subset \mathscr{P}^{
ho}_{\omega,0}$$
 for $\Lambda W_0 + x \subset W_0$

and Ω_{ω} is cyclic for $\mathscr{P}^{\rho}_{\omega,0}$ if it is cyclic for $\mathscr{P}^{\mathsf{id}}_{\omega,0}$.

- Find (class of) deformation maps ρ on $\underline{\mathscr{S}}$
- Find states compatible with ρ (at least free field Wightman state should be compatible)
- Adjust ρ and ω in such a way that ρ is wedge-local in ω :

 $[\phi^{
ho}_{\omega}(f), \, \phi^{
ho_j}_{\omega}(g)]\Psi = 0,$

9/23

 $f \in \underline{\mathscr{S}}(W_0), g \in \underline{\mathscr{S}}(jW_0), \Psi \in \phi_{\omega}(\underline{\mathscr{S}})\Omega_{\omega}.$

- Possibly proceed to von Neumann algebras of bounded functions of field operators, M^ρ_ω := {exp iφ^ρ_ω(f) : f ∈ 𝒴_ℝ(W₀)}".
- Then $\mathcal{M}^{\rho}_{\omega}$, U_{ω} satisfy our requirements, and generate a QFT.

Rest of the talk: Carry out this program for a simple class of ρ 's.

Multiplicative deformations

 A deformation map is called multiplicative (in momentum space) if it has the form

$$\widetilde{\rho(f)}_n(p_1,...,p_n) = \rho_n(p_1,...,p_n) \cdot \widetilde{f}_n(p_1,...,p_n).$$

10/23

 \rightarrow abelian subgroup of deformations $\mathcal{R}_0 \subset \mathcal{R}$.

Lemma:

For ρ to be a deformation map, the ρ_n must be smooth and satisfy

- polynomial bounds from above and below on their derivatives
- For each Lorentz transformation Λ with $\Lambda W_0 = W_0$,

$$\rho_n(\Lambda p_1,...,\Lambda p_n) = \rho_n(p_1,...,p_n).$$

• $\overline{\rho_n(-\rho_n,...,-\rho_1)} = \rho_n(\rho_1,...,\rho_n)$ (for $(f \otimes_{\rho} g)^* = g^* \otimes_{\rho} f^*$) • $\rho_0 = 1$ (for $f \otimes_{\rho} 1 = f = 1 \otimes_{\rho} f$)

Multiplicative deformations and compatible states

• The deformed product associated with $ho\in\mathcal{R}_{0}$ is

$$\widetilde{(f \otimes_{\rho} g)}_{n}(p_{1},..,p_{n}) = \sum_{k=0}^{n} \rho_{kn}(p_{1},..,p_{n}) \cdot \widetilde{f}_{k}(p_{1},..,p_{k}) \widetilde{g}_{n-k}(p_{k+1},..,p_{n})$$

with $\rho_{kn}(p_{1},..,p_{n}) := \frac{\rho_{k}(p_{1},..,p_{k})\rho_{n-k}(p_{k+1},..,p_{n})}{\rho_{n}(p_{1},..,p_{n})}$

- Can take $\rho_1(p_1) = 1$ without loss of generality.
- Compatible states: Need

$$\int d\mathbf{p} \,\tilde{\omega}_n(-p_1,...,-p_n) \,\rho_{kn}(p_1,...,p_n) \tilde{f}_k(p_1,...,p_k) \tilde{g}_{n-k}(p_{k+1},...,p_n)$$
$$= \int d\mathbf{p} \,\tilde{\omega}_n(-p_1,...,-p_n) \,\tilde{f}_k(p_1,...,p_k) \tilde{g}_{n-k}(p_{k+1},...,p_n)$$

 If ρ ∈ R₀ is compatible with all translationally invariant states, then

$$\rho_n(p_1,...,p_n) = \rho_k(p_1,...,p_k)\rho_{n-k}(p_{k+1},...,p_n)$$

for all $k \in \{1, ..., n - 1\}$ and $p_1 + ... + p_n = 0$.

- One solution is known (warped convolution)
- More solutions? ... Alazzawi

Deformation two-point functions

Proposition:

Let $\rho_2 \in C^\infty(\mathbb{R}^d \times \mathbb{R}^d)$ be a two-point function of a multiplicative deformation satisfying

$$\rho_2(p,-p) = 1, \qquad \rho_2(-p,q) = \rho_2(p,-q) = \rho_2(q,p) = \rho_2(p,q)^{-1}.$$

13/23

Define

$$\rho_0 := 1, \qquad \rho_1(p_1) := 1, \qquad \rho_n(p_1, ..., p_n) = \prod_{1 \le l < r \le n} \rho_2(p_l, p_r), \quad n \ge 2.$$

Then

• The ρ_n define a multiplicative deformation $\rho \in \mathcal{R}_0$.

• ρ is compatible with all **quasi-free** translationally inv. states ω .

Problem of finding deformations reduced to two-point function ρ_2 .

Definition:

A **deformation function** is a smooth function $R : \mathbb{R} \to \mathbb{C}$, polynomially bounded in all derivatives, such that

14/23

•
$$R(a)^{-1} = \overline{R(a)} = R(-a)$$
, $R(0) = 1$.

- The Fourier transform \tilde{R} of R has support on the positive half line.
- Support restriction on $\tilde{R} \Leftrightarrow$ analyticity and boundedness of R.

• Examples:

$$R(a)=e^{ica}\prod_{k=1}^{N}rac{z_k-a}{z_k+a},\qquad c\geq 0,\; {
m Im} z_1,...,{
m Im} z_N\geq 0$$

These functions appear in many places (+ Longo/Witten 10) (+ Longo/Rehren 11

Definition

A real $(d \times d)$ -matrix Q is called **admissible** (Buchholz/GL/Summers 10) if

• Q is antisymmetric w.r.t. the Minkowski inner product

•
$$\Lambda Q \Lambda^{-1} = \begin{cases} Q ; & \Lambda \in \mathcal{L}_{+}^{\uparrow} \text{ with } \Lambda W_{0} = W_{0} \\ -Q ; & \Lambda \in \mathcal{L}_{+}^{\downarrow} \text{ with } \Lambda W_{0} = W_{0} \end{cases}$$

• $QV^{+} \subset W_{0}.$

Q must have the form

$$Q = \left(egin{array}{ccccc} 0 & \kappa & 0 & 0 \ \kappa & 0 & 0 & 0 \ 0 & 0 & 0 & \kappa' \ 0 & 0 & -\kappa' & 0 \end{array}
ight)$$

with $\kappa \geq 0, \ \kappa' \in \mathbb{R}$.

15/23

Lemma:

Let R be a deformation function and Q an admissible matrix. Then the deformation two-point function

16/23

$$o_2(p,q) := R(-p \cdot Qq)$$

defines a multiplicative deformation $\rho(R, Q) \in \mathcal{R}_0$ compatible with all quasi-free translationally invariant states.

• Transformation law:

$$\alpha_{x,\Lambda}(f \otimes_{\rho(R,Q)} g) = \alpha_{x,\Lambda}(f) \otimes_{\rho(R,\pm\Lambda Q\Lambda^{-1})} \alpha_{x,\Lambda}(g)$$

Theorem:

Let R be a deformation function, and Q an admissible matrix. Then the deformation $\rho(R, Q)$ is wedge-local in any quasi-free Wightman state.

17/23

Important ingredients of proof:

• Need to show that for $f \in \underline{\mathscr{S}}(W_0)$, $g' \in \underline{\mathscr{S}}(W'_0)$, $h, k \in \underline{\mathscr{S}}$,

$$\omega((h \otimes_{
ho} f) \otimes (g' \otimes_{
ho'} k)) = \omega((h \otimes_{
ho'} g') \otimes (f \otimes_{
ho} k)).$$

• The automorphisms

$$(\widetilde{\tau_x^R f})_n(p_1,...p_n) := \prod_{k=1}^n R(x \cdot p_k) \cdot \widetilde{f}_n(p_1,...,p_n)$$

satisfy

$$\tau_x^R(\mathscr{\underline{S}}(W_0)) \subset \mathscr{\underline{S}}(W_0) \text{ for } x \in \overline{W_0},$$

supp $(h_m \otimes_{\rho} f_n) \subset \mathbb{R}^{md} \times W_0^n$ for supp $\tilde{h}_m \subset V_-^m$, supp $f_n \subset W_0^n$.

- Quasi-free Wightman state $\omega \rightarrow$ Fock space \mathcal{H}_{ω} as GNS space.
- If ũ₂(p,q) = δ(p + q)δ(p⁰ − ε_p)ε_p⁻¹, ε_p = (p² + m²)^{1/2}, m > 0, then φ_ω is the scalar massive Klein-Gordon field.

18/23

Deformed field $\phi_{R,Q} := \phi_{\omega}^{\rho(R,Q)}$ satisfies by construction:

- $U(x,\Lambda)\phi_{R,Q}(f)U(x,\Lambda)^{-1} = \phi_{R,\Lambda Q\Lambda^{-1}}(\alpha_{x,\Lambda}f)$ for $(x,\Lambda) \in \mathcal{P}_+^{\uparrow}$.
- $U(0,j)\phi_{R,Q}(f)U(0,j)^{-1} = \phi_{R,-Q}(\alpha_j f).$
- $[\phi_{R,Q}(f), \phi_{R,-Q}(g)]\Psi = 0$ for $f \in \underline{\mathscr{L}}(W_0), g \in \underline{\mathscr{L}}(W'_0), \Psi \in \mathcal{D}.$
- still solves Klein-Gordon equation
- $\lambda \mapsto \phi_{R,\lambda \cdot Q}(f) \Psi$ continuous, $\Psi \in \mathcal{D}$. In particular

$$\lim_{\lambda\to 0}\phi_{R,\lambda\cdot Q}(f)\Psi=\phi(f)\Psi.$$

With $\mathscr{P}_R(\Lambda W_0 + x) := *$ -alg. gen. by $\phi_{R,\Lambda Q\Lambda^{-1}}(f)$, $f \in \underline{\mathscr{S}}(\Lambda W_0 + x)$,

 $W \mapsto \mathscr{P}_R(W)$

19/23

is an isotonous, covariant, (wedge-) local net of *-algebras satisfying the Reeh-Schlieder property.

- Passage to von Neumann algebras M_R(W) possible here (essentially self-adjoint field operators).
- Ω is cyclic and separating for M_R(W₀), with modular data independent of R.
- Infinite family of solutions to inverse problem in modular theory
 Wollenberg
- Ω is not cyclic for spacelike cones.

Explicit realization of deformed fields: Replace creation/annihilation operators a[#](p) by

$$a_{R,Q}(p) := a(p)T_R(Qp), \qquad a_{R,Q}^{\dagger}(p) := a^{\dagger}(p)T_R(-Qp), (T_R(x)\Psi)_n(q_1,...,q_n) := \prod_{k=1}^n R(x \cdot q_k) \cdot \Psi_n(q_1,...,q_n).$$

20/23

• For $f_1 \in \mathscr{S}_1$, the deformed fields take the form

$$\phi_{R,Q}(f_1) = (2\pi)^{-d} \int dp \, dx \, e^{-ip \cdot x} \, U(x,1)\phi(f_1)U(-x,1)T_R(-Qp)$$

Formula similar to warped convolution, but not valid for higher tensors $f_n \in \mathscr{S}_n$, n > 1.

• The S-matrix for 2 \rightarrow 2 processes can be calculated. For $f_1, g_1, h_1, k_1 \in \mathscr{S}_1$ with velocity supports $\Gamma(f_1) - \Gamma(g_1) \subset W_0$, $\Gamma(h_1) - \Gamma(k_1) \subset W_0$,

$$f_{1}^{+} \times_{\text{out }}^{R} g_{1}^{+}, h_{1}^{+} \times_{\text{in }}^{R} k_{1}^{+} \rangle$$

= $\int d\mu(p_{1}) d\mu(p_{2}) R(-p_{1} \cdot Qp_{2})^{2} \overline{\tilde{f}_{1}(p_{1})} \overline{\tilde{g}_{1}(p_{2})} \tilde{h}_{1}(p_{1}) \widetilde{k}_{1}(p_{2}).$

21/23

- Phase shift effect, no particle production
- S-matrix fully Lorentz invariant only in d = 1 + 1
- The deformation function is the root of the two-particle S-matrix

Deformations of QFTs and integrable models

- When deforming in d = 1 + 1, one obtains integrable models.
- rapidity-parametrized on-shell momenta p(θ) = m(cosh θ, sinh θ) lead to

$$S(\theta_1 - \theta_2) := R(-p(\theta_1) \cdot Qp(\theta_2))^2 = R(\kappa m^2 \sinh(\theta_1 - \theta_2))^2$$

22/23

with the usual unitarity, analyticity, crossing relations of the scattering function *S*.

- Same structure as in algebraic construction of integrable models
 Schroer 97
 Schroer 00
 Buchholz/GL 04
 GL 06

Theorem:

Every 2d integrable QFT with scattering function S of the above form arises from a free field theory by deformation. If S is **regular**, then the deformed theory satisfies Reeh-Schlieder for double cones above a minimal size $\bigcirc 100$.

Conclusion

- Multiplicative deformations: Large family of new QFT deformations
- Lead to wedge-local covariant models in any dimension
- In d = 1 + 1, provide deformations of free field theories into fully local integrable QFTs

23/23

- In d > 1 + 1, more complicated deformations (non-multiplicative) for more realistic interaction needed (particle production).
- Need deformation maps of the form

$$\widetilde{\rho(f)}_{n}(p_{1},..,p_{n}) = \sum_{m=0}^{\infty} \int dq_{1}..dq_{m} \rho_{nm}(p_{1},..,p_{n};q_{1},..,q_{m}) \,\widetilde{f}_{m}(q_{1},..,q_{m})$$

 More complicated, but might give interacting models in d > 1 + 1 (wedge-local fields no longer polarization-free)