Modular Localization and Constructive Algebraic QFT GANDALF LECHNER

This talk was the second in a series of three (by R. Longo, myself, and Y. Tanimoto, respectively) on applications of Tomita-Takesaki modular theory in algebraic quantum field theory. The focus of my talk was the construction of examples of algebraic quantum field theories.

A central notion in this context is that of a Borchers triple. In the simplest two-dimensional situation, this consists of a von Neumann algebra \mathcal{M} on a Hilbert space \mathcal{H} , a unitary strongly continuous positive energy representation $U(x_+, x_-) = e^{ix_+P_+}e^{ix_-P_-}$ of \mathbb{R}^2 such that $\operatorname{ad} U(x_+, x_-)(\mathcal{M}) \subset \mathcal{M}$ for $x_+ \geq 0, x_- \leq 0$, and a unit vector $\Omega \in \mathcal{H}$ that is invariant under U and cyclic and separating for \mathcal{M} (see [2], and [5] for a review).

Given a Borchers triple (\mathcal{M}, U, Ω) , the representation U extends from \mathbb{R}^2 to the proper Poincaré group \mathcal{P} by a theorem of Borchers [1]. The algebra \mathcal{M} can be interpreted as being localized in the wedge region $W = \{x \in \mathbb{R}^2 : x_+ > 0, x_- < 0\}$, and by a canonical procedure, the triple defines a map from open subsets $\mathcal{O} \subset \mathbb{R}^2$ to von Neumann algebras $\mathcal{A}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ that is inclusion-preserving, local, covariant under the representation U, and fixed by $\mathcal{A}(W) = \mathcal{M}$.

If this map has also the property that Ω is cyclic for $\mathcal{A}(\mathcal{O})$ for every nonempty \mathcal{O} , these data describe a quantum field theory in its vacuum representation. One is therefore interested in finding examples of Borchers triples. Free field theory examples of Borchers triples are well-known.

In this talk, I reviewed two procedures for constructing examples of Borchers triples. The first [2] is related to Rieffel deformations of C^* -algebras [7] and is based on the notion of a *warped convolution*, a deformation procedure for operators in $\mathcal{B}(\mathcal{H})$. Let (\mathcal{M}, U, Ω) be a Borchers triple (for example, one given by a free field theory), and let $A \in \mathcal{M}$ be an operator that is smooth w.r.t. U, i.e. such that $x \mapsto \mathrm{ad}(U(x))(A)$ is smooth in norm. As a deformation parameter, consider a 2×2 matrix Q antisymmetric w.r.t. the Minkowski inner product. Then the warped convolution of A is defined as

$$A_Q = (2\pi)^{-2} \int_{\mathbb{R}^2} dp \int_{\mathbb{R}^2} dx \, e^{-ip \cdot x} \operatorname{ad}(U(Qp))(A) \, U(x).$$

This integral exists in an oscillatory sense on the dense domain of smooth vectors in \mathcal{H} and extends to a bounded operator on all of \mathcal{H} . Denote the von Neumann algebra generated by all A_Q , $A \in \mathcal{M}$ smooth, by \mathcal{M}_Q .

Then the main theorem in this context, a consequence of various properties of the map $A \mapsto A_Q$, is that the triple $(\mathcal{M}_Q, U, \Omega)$ is again a Borchers triple if Qsatisfies a positivity condition related to the spectrum of U. One thus obtains a family of Borchers triples, indexed by Q, from a given one. Triples with different parameters are inequivalent, but they all have the special property that the modular data of \mathcal{M}_Q are independent of Q, i.e. coincide with the modular data of the original von Neumann algebra $\mathcal{M}_0 = \mathcal{M}$. It is an open problem whether the "local" von Neumann algebras $\mathcal{A}_Q(\mathcal{O})$ generated from $(\mathcal{M}_Q, U, \Omega)$ are non-trivial or not.

The second procedure for constructing Borchers triples is based on the notion of a crossing-symmetric R-matrix. One starts from the single particle Hilbert space $\mathcal{H}_1 = L^2(\mathbb{R}, d\theta) \otimes \mathcal{K}$, where \mathcal{K} is a separable (often times finite-dimensional) Hilbert space for internal degrees of freedom, and $L^2(\mathbb{R}, d\theta)$ carries the usual realization of the unitary massive irreducible positive energy representation U_1 of \mathcal{P} . In this context, a crossing-symmetric R-matrix is a function R from \mathbb{R} to unitaries on $\mathcal{K} \otimes \mathcal{K}$ satisfying a number of properties. In particular, $R(\theta)$ is required to satisfy the Yang-Baxter equation with spectral parameter θ and a symmetry condition that ensures that R generates a unitary representation of the symmetric group S_n on $\mathcal{H}_1^{\otimes n}$. Denoting by $\mathcal{H}_n \subset \mathcal{H}_1^{\otimes n}$ the subspace on which this representation acts trivially, the Hilbert space of the Borchers triple to be constructed is then $\mathcal{H} := \bigoplus_n \mathcal{H}_n$. The representation U is defined by second quantization of U_1 , and Ω is defined as the Fock vacuum of \mathcal{H} .

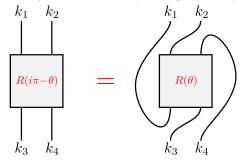
Similar to a usual Bose Fock space, also \mathcal{H} carries canonical creation / annihilation operators, and their sum defines a quantum field ϕ [6]. These field operators generate a von Neumann algebra \mathcal{M} such that (\mathcal{M}, U, Ω) is a Borchers triple if Rextends to a bounded analytic function on the complex strip $0 < \text{Im}\theta < \pi$ and the crossing symmetry

$$\langle k_1 \otimes k_2, R(i\pi - \theta) k_3 \otimes k_4 \rangle = \langle k_2 \otimes \Gamma k_4, R(\theta) \Gamma k_1 \otimes k_3 \rangle, \quad \theta \in \mathbb{R},$$

reminiscent of the KMS condition. Here k_1, \ldots, k_4 are arbitrary vectors in \mathcal{K} , and Γ is an antiunitary involution on \mathcal{K} related to the modular conjugation of \mathcal{M} (see [3]). The local algebras are non-trivial if R satisfies further regularity conditions.

To make connections to other talks given at this meeting, let us make the following two observations.

(1) The crossing symmetry of R can be depicted graphically as



which suggests a relation to the string Fourier transform presented in the talk by A. Jaffe.

(2) The domain of the one-particle component of the modular operator $\Delta^{1/2}$ becomes a complex Hilbert space when closed in its graph norm. For

the setting of the second example, this Hilbert space coincides with the classical Hardy space on the strip $0 < \text{Im}\theta < \pi$ [4], and thus connects to the reproducing kernel Hilbert space setting discussed by P. Jorgensen.

References

- H.-J. Borchers. The CPT theorem in two-dimensional theories of local observables. Comm. Math. Phys., 143:315–332, 1992.
- [2] D. Buchholz, G. Lechner, and S. J. Summers. Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories. Comm. Math. Phys., 304:95–123, 2011.
- [3] S. Hollands and G. Lechner. SO(d, 1)-invariant Yang-Baxter operators and the dS/CFTcorrespondence. Comm. Math. Phys., doi: 10.1007/s00220-017-2942-6, 2017.
- [4] G. Lechner, D. Li, H. Quefflec, L. Rodriguez-Piazza. Approximation numbers of weighted composition operators. *Preprint*, arXiv:1612.01177, 2016
- [5] G. Lechner. Algebraic Constructive Quantum Field Theory: Integrable Models and Deformation Techniques In: Advances in Algebraic Quantum Field Theory, Brunetti, R. et al (eds), 397449, Springer, 2015.
- [6] G. Lechner and C. Schützenhofer. Towards an operator-algebraic construction of integrable global gauge theories. Annales Henri Poincaré 15 (2014) 645–678
- [7] M.A. Rieffel, Deformation quantization for actions of \mathbb{R}^d , Memoirs A.M.S., **506**, 1–96 (1993).